From Engineer to Alchemist, There and Back Again: An Alchemist Tale

Danilo Pianini – danilo.pianini@unibo.it

Alma Mater Studiorum—Università di Bologna

Cesena, May 24th, 2013
1 Simulation
 - Definitions
 - Models
 - When it’s useful?

2 Alchemist
 - SAPERE background
 - Computational model
 - Engine and architecture
 - Case studies
 - Performance

3 Development
 - Development model
 - Contributors
 - Future activities
Simulation
Scientific Method

Traditional science workflow [Parisi, 2001]

- Traditional scientific method
 - identification
 - direct observation
 - theories / hypothesis
 - empirical observation
 - quantitative analysis
 - validation / invalidation
Definition of Simulation

- A new way for describing scientific theories

[Parisi, 2001]
- Simulation is the process with which we can study the dynamic evolution of a model system, usually through computational tools

[Banks, 1999]
- Simulation is the imitation of the operation of a real-world process or system over time
Simulation Requires a Model

M. Minsky – Models, Minds, Machines

A model (M) for a system (S), and an experiment (E) is anything to which E can be applied in order to answer questions about S.

- Representation / abstraction
- Formalisation
- Aggregation, Simplification, Omission

Building a model...

- How complex should be the model?
- Which assumptions should be done?
Simulation Models

From Model to Simulation...

Computer simulation

- Models are designed runnable processes
- Simulation creates a **virtual laboratory**
 - controlled conditions
 - it’s easy to modify the experiment (variables, parameters, etc.)
- Simulations imitate the operations of the modelled process
 - generation of an **artificial evolution** of the system
... and Back

- Deductions on the real system represented
- Evaluation of theories about the model

Model validation [Klugl and Norling, 2006]

- if the data is reliable;
- if prediction doesn't match the observed behaviour do not match
- ⇒ the model must be revised
Why do we Need Simulations?

- The real system cannot actually be observed
- The time scale of the real system is too small or too large for observation
- The original system doesn’t yet exist (or not anymore)
- The system is too complex
SAPERE (Self-aware Pervasive Service Ecosystems) is an EU STREP project under the FP7 FET Proactive Initiative: Self-Awareness in Autonomic Systems (AWARENESS)

The objective of SAPERE is the development of a highly-innovative theoretical and practical framework for the decentralized deployment and execution of self-aware and adaptive services for future and emerging pervasive network scenarios
SAPERE World
Simulation of a SAPERE environment

The role of simulation
- Emergence cannot be fully designed
- It’s crazy to deploy a whole ecosystem without any test

First class abstractions
- Dynamic environment
- Different, mobile, communicating nodes
- Programmability through a set of chemical-like laws
- Continuous Time Markov Chain (CTMC) model
- Autonomous agents
Two approaches

Classic ABM modelling
- High flexibility
- Topology as first-class abstraction
- Dynamics explicitly modelled
- No native support for CTMC model

Chemical inspired modelling
- Natively CTMC
- Very fast and reliable algorithms exist in literature
- Very limited topology: multicompartment at best
- Only classic reactions can change the world status: limited flexibility
Alchemist simulation approach

Base idea

- Start from the existing work with stochastic chemical systems simulation
- Extend it as needed to reach desired flexibility

Goals

- Full support for Continuous Time Markov Chains (CTMC)
- Support for differently distributed events (e.g. Triggers)
- Rich environments, with obstacles, mobile nodes, etc.
- More expressive reactions
- Fast and flexible SSA engine
Enriching the environment description

- The Environment contains and links together Nodes
- Each Node is programmed with a set of Reactions
- Nodes contain Molecules
- Each Molecule in a node is described with a Concentration
Extending the concept of reaction

From a set of reactants that combine themselves in a set of products to:

In Alchemist, every event is an occurrence of a Reaction.
Several SSA exist, they follow the same base schema [Gillespie, 1977]:

1. Select next reaction using markovian rates
2. Execute it
3. Update the rates which may have changed
Do the math: reaction speed

Consider a chemical reaction in the form:

\[A + B \xrightarrow{\mu} C \]

The probability that this reaction will trigger depends on:

1. Number of molecules \(A \) and \(B \): the higher, the higher the probability those molecule will encounter and react

2. \(\mu \), a speed coefficient for the reaction

We define the propensity of a reaction as its speed in a precise instant of time as

\[a_\mu = \mu[A][B] \]
If we assume every reaction is a Poisson process, the probability for it to be the next one is:

\[
P(\text{next} = \mu) = \int_0^\infty P(\mu, \tau) d\tau = \int_0^\infty a_\mu e^{-\tau} \sum_j a_j d\tau = \frac{a_\mu}{\sum_j a_j}
\]
Do the math: next reaction time

We can also compute the next time of occurrence:

\[
P(\tau)d\tau = \sum_j P(\mu, \tau)d\tau = \left(\sum_j a_j\right) e^{-\tau \sum_j a_j}d\tau
\]

\[
\sum_j a_j = \lambda \rightarrow \lambda e^{-\lambda x}
\]

\[
F(x \leq t) = \int_{-\infty}^{t} \lambda e^{-\lambda x} dx = \left[-e^{-\lambda t}\right]_{-\infty}^{t} = e^{-\lambda t}
\]

Now, given a uniformly distributed random \(r \), it’s possible to compute it’s equivalent for the desired distribution:

\[
e^{-\lambda t} = r \Rightarrow t = \frac{-\ln (r)}{\lambda}
\]
Existing algorithms

Direct method

1. Compute propensity for each reaction
2. Select next reaction probabilistically
3. Execute it
Existing algorithms

Direct method + Dependency graph

1. Compute the dependencies among reactions
2. Compute propensity for each reaction
3. Select next reaction probabilistically
4. Execute it
5. Update propensities only for potentially involved reactions
6. Goto 3
Existing algorithms

Next Reaction

1. Compute a putative execution time for each reaction
2. Store reactions in a binary heap
3. Pick the next reaction
4. Execute it
5. Compute putative times only for potentially involved reactions
6. Goto 3
Existing algorithms

[Slepoy et al., 2008]

1. Compute propensities
2. Split the reactions in groups by their propensity
3. Throw randoms until a reaction in a group is selected
4. Execute it
5. Update propensities only for potentially involved reactions
6. Goto 3
More flexibility!

What they miss is what we added

- Support for instantaneous events (∞ Markovian rate)
- Reactions can be added and removed during the simulation
- Support for non-exponential time distributed events (e.g. triggers)
- Dependencies among reactions are evaluated considering their “context”, speeding up the update phase
Smart data structures ⇒ bleeding edge performances

Next Reaction efficient structures made dynamic

- Dynamic Indexed Priority Queue
 - Allow to access the next reaction to execute in $O(1)$ time
 - Worst case update in $\log_2 (N)$ (average case a lot better)
 - Extended to ensure balancing with insertion and removal

- Dynamic Dependency Graph
 - Allows to smartly update only a subset of all the reaction
 - Extended with the concept of input and output context
Modular structure

- Core Engine
 - Reaction Manager
 - Simulation Flow
 - Dependency Graph

- User Interface
 - Reporting System
 - Interactive UI

- Alchemist language
 - Language Parser
 - Environment Instantiator
 - XML Bytecode

- Incarnation-specific language
 - Application-specific Alchemist Bytecode Compiler
 - Environment description in application-specific language
Some Features in short

- Parallel executor
- Approximate Stochastic Model Checker
- Parallelised engine
- Alchemist2Blender
- PVeStA integration
Crowd evacuation
Crowd steering
Adaptive Displays
Simple Morphogenesis proof of concept
Morphogenesis of a Drosophila Melanogaster
Anticipative adaptation
Realistic pedestrians

see the video...
Testbed

- We realised the same crowd-steering application for both Alchemist and RePast, in order to evaluate the performance gap (if any)
- Source code for RePast and standalone Alchemist application available at http://www.apice.unibo.it/xwiki/bin/view/Alchemist/JOS
- We choose a simplified use case which allows simulation in RePast without any change in its engine
 - This actually cripples out the most important Alchemist optimization for complex environment (the dependency graph)
Results

Performance comparison with Repast

Execution time [s] vs Number of agents

Repast
Alchemist
Development
Distributed development

Alchemist is a training ground for some good team development practices

- Linux kernel-like development model
- Java
- XText
- Mercurial DCVS
- Bitbucket web-based code hosting
- Maven
- JUnit
- Source is released under GPL
People involved

- **Michele Bombardi** (Done)
 - Realistic pedestrians

- **Chiara Casalboni** (Done)
 - Realistic pedestrians

- **Francesca Cioffi** (Done)
 - Further experiments with Alchemist-SAPERE

- **Davide Ensini** (Done)
 - Approximate Stochastic Model Checker improvement

- **Enrico Galassi** (Done)
 - Alchemist-SAPERE high level language

- **Enrico Gualandi** (Ongoing)
 - Alchemist-SAPERE languages review
People involved

- **Luca Mella** (Done)
 - Tools for social network analysis

- **Alessandro Montalti** (Done)
 - MS-BioNet to AlchemistXML translator

- **Luca Nenni** (Done)
 - Alchemist2Blender

- **Enrico Polverelli** (Done)
 - Gradient based patterns

- **Michele Pratiffi** (Done)
 - Image importer for Alchemist

- **Giacomo Pronti** (Done)
 - SAPERE incarnation main author

- **Luca Ricci** (Ongoing)
 - Map importer for Alchemist

- **Andrea Vandin** (IMT Lucca)
 - PVeStA integration
There is a lot of work to do!

- MS-Bionet compatibility layer
- AlcheGRID
- Alchemist2Blender improvement
- OpenStreet Map importer and Google Map importer
- Blender Integration improvement
- Gnuplot integration
- CellML / SBML to AlchemistXML
- Chemistry Incarnation review
- Alchemist for Bio DSL
- Realistic biological gradients
- GPX tracks loader
- RDF to Alchemist-SAPERE translator

These are examples, if you have something in mind, be proactive!

Danilo Pianini (UniBo)
Bibliography I

From Engineer to Alchemist, There and Back Again: An Alchemist Tale

Danilo Pianini – danilo.pianini@unibo.it

Alma Mater Studiorum—Università di Bologna

Cesena, May 24th, 2013