Example 1

A Health Agency has to decide about opening new ambulatories to serve a set of m users ($i = 1, \ldots, m$). A preliminary investigation suggests a set of n potential locations. Each user can be served by an ambulatory on location j ($j = 1, \ldots, n$) if the location is not “too far” from the user’s home. Thus, we are given a matrix A whose entry a_{ij} has value 1 if user i can be served by an ambulatory open in location j and 0 otherwise. The cost of opening an ambulatory on location j is equal to c_j. Moreover, the ambulatory in location j can serve at most M_j users. Finally, for planning reasons, the Health Agency wants to open at least P ambulatories, serve all users and minimize the overall cost.

Integer Linear Programming Model:

$$x_{ij} := \begin{cases} 1 & \text{if user } i \text{ is served by ambulatory } j \\ 0 & \text{otherwise} \end{cases} \quad i = 1, \ldots, m; j = 1, \ldots, n;$$

$$y_j := \begin{cases} 1 & \text{if ambulatory } j \text{ is open} \\ 0 & \text{otherwise} \end{cases} \quad j = 1, \ldots, n;$$

$$\min \sum_{j=1}^{n} c_j y_j$$

(1a)

$$\sum_{j=1}^{n} a_{ij} x_{ij} = 1 \quad \forall i = 1, \ldots, m$$

(1b)

$$\sum_{i=1}^{m} x_{ij} \leq M_j y_j \quad \forall j = 1, \ldots, n$$

(1c)

$$\sum_{j=1}^{n} y_j \geq P$$

(1d)

$$y_j \in \{0, 1\} \quad \forall j = 1, \ldots, n$$

(1e)

$$x_{ij} \in \{0, 1\} \quad \forall i = 1, \ldots, m; \forall j = 1, \ldots, n$$

(1f)
Example 2

The Ministry of Home Security must decide concerning the opening of new Fire Stations so as to serve q neighborhoods ($i = 1, \ldots, q$) in Bologna. A preliminary investigation led to the consider a set of s potential areas $j, j = 1, \ldots, s$ where a Fire Station can be built. Each neighborhood i can be served by a Fire Station on area j if that is not “too far”. Then, we are given a binary matrix A whose entry a_{ij} is 1 if neighborhood i can be served by a Fire Station on area j and 0 otherwise. The opening cost for the Fire Station in area j is r_j. For security reasons, each neighborhood must be potentially served by at least 2 (open) Fire Stations, and at least B Fire Stations must be open. The constraints must be satisfied by minimizing the overall opening cost.

Integer Linear Programming Model:

\[
y_j := \begin{cases}
 1 & \text{if Fire Station } j \text{ is open} \\
 0 & \text{otherwise}
\end{cases} \quad j = 1, \ldots, s;
\]

\[
\min \sum_{j=1}^{s} r_j y_j \quad (2a)
\]
\[
\sum_{j=1}^{s} a_{ij} y_j \geq 2 \quad \forall i = 1, \ldots, q \quad (2b)
\]
\[
\sum_{j=1}^{s} y_j \geq B \quad (2c)
\]
\[
y_j \in \{0, 1\} \quad \forall j = 1, \ldots, s \quad (2d)
\]

(2e)
Example 3

A pet shop has \(n \) water pools to be used to show a set of \(m \) tropical fishes. Each pool \(j \) has a cost of \(c_j \) and a volume \(V_j \). The shop owner wants to minimize the overall cost of the pools used by considering that, for space reasons, the shop can use at most \(K \) pools simultaneously. It is given a graph \(G = (V, E) \) whose generic edge \(e_{ij} \) defines the incompatibility between fishes \(i \) and \(j \), respectively, of being put in the same pool (because of the natural nutrition chain). Moreover, we are given a binary matrix \(B \) whose entry \(b_{ij} \) is equal to 1 if fish \(i \) can be assigned to pool \(j \) and 0 otherwise. Finally, each fish \(i \) needs a living space of \(v_i \), thus the sum of the living space of the fishes assigned to the same pool \(j \) cannot be higher than the volume of the volume \(V_j \).

Integer Linear Programming Model:

\[
y_j := \begin{cases}
1 & \text{if pool } j \text{ is used} \\
0 & \text{otherwise}
\end{cases} \quad j = 1, \ldots, n; \\
x_{ij} := \begin{cases}
1 & \text{if fish } i \text{ is assigned to pool } j \\
0 & \text{otherwise}
\end{cases} \quad i = 1, \ldots, m; \quad j = 1, \ldots, n; \\
\min \sum_{j=1}^{n} c_j y_j \\
\sum_{j=1}^{n} y_j \leq K \tag{3a} \\
\sum_{j=1}^{n} b_{ij} x_{ij} = 1 \quad \forall i = 1, \ldots, m \tag{3b} \\
\sum_{i=1}^{m} v_i x_{ij} \leq V_j y_j \quad \forall j = 1, \ldots, n \tag{3c} \\
x_{ij} + x_{hj} \leq y_j \quad \forall (i, h) \in A, j = 1, \ldots, n \tag{3d} \\
x_{ij}, y_j \in \{0, 1\} \quad \forall i = 1, \ldots, m, j = 1, \ldots, n \tag{3e} \\
\end{eqnarray}

Discuss alternatives and/or possible improvements to the above model.