Programmazione Avanzata e Paradigmi
Ingegneria e Scienze Informatiche - UNIBO
a.a 2013/2014
Lecturer: Alessandro Ricci

[module 1.2]
FUNCTIONAL PROGRAMMING
INTRODUCTION
SUMMARY

• Functional Programming - main ingredients
 – functions and expressions
 • abstraction, applications
 – functions as expressible values
 • lambda expressions
 – computation as reduction
 – evaluation strategies
 • call-by-value, call-by-name, lazy evaluation
THE FUNCTIONAL PARADIGM

• (Mathematical) **functions** as model of computation is the function
 – function are treated as first-class object
 – can be recursive, high-order, polymorphic

• Computation is carried out entirely through *evaluation of expressions*
 – evaluating expressions = rewriting (reducing) expressions

• No state modification (like in the imperative)
 – variables are immutable bindings to symbols
 • not memory location
 – no assignment
 – no iterations and loops
 • recursion is used instead
FUNCTIONS AND EXPRESSIONS

- Functional languages have no commands, only expressions
- Two main constructs for defining expression (a part of primitive data values and operators)
 - \textbf{abstraction} \((\lambda x.<\text{exp}>)\)
 - given an expression \(<\text{exp}>\) and an identifier \(x\) allows the construction of an expression \((\lambda x.<\text{exp}>)\) denoting a function that transforms the formal parameter \(x\) into \(<\text{exp}>\)
 - \(<\text{exp}>\) is "abstracted" from the specific value bound to \(x\)
 - \textbf{application} \((<f_exp> <a_exp>)\)
 - the application of an expression \(<f_exp>\) to another \(<a_exp>\), which denotes the application of a function denoted by \(<f_exp>\) to the argument denoted by \(<a_exp>\)
EXAMPLE - HASKELL

• Function definition. Syntax:

```
<func name> :: <func type>
<func name> <formal params> = <expression>
```

```
myFunc :: Int -> Int -> Int
myFunc x y = x + y + 1
```

• Evaluating the expression using an Haskell REPL

```
> myFunc 1 2
4
```

• Definitions can be used in general for binding values to symbols:

```
aValue :: Int
aValue = 5
```
EXAMPLE - HASKELL

- Function application. Syntax:

 `<func name> <actual param expr>`

- Example - definition of a new function with function application in the body:

  ```
  myFunc2 :: Int -> Int -> Int -> Int
  myFunc2 x y z = z * myFunc x y
  ```
FUNCTION AS EXPRESSIBLE VALUES

• Functions can be treated as values
 – specific syntax for an expression which denotes a function (value)
 • i.e. it is possible to write a function without necessarily to assign it a name
 – they have a type

• Outcome
 – can be assigned to variables, can be passed as a parameter, can be returned as the result of a function...
 • *high-order functions* = functions that have other functions as parameter
LAMBDA EXPRESSIONS IN HASKELL

• Expressions denoting functional values. Syntax:

\ <params> -> <body>

• Can be used in every place where expressions/values of the specified type (which is functional type)

> (\x -> x+1) 3
4

fun :: (Int -> Int -> Int) -> Int -> Int
fun f a = f a a

> fun (\x y -> x + y) 5
10
IN SCALA

• Example of lambda expression in Scala (using Scala REPL):

```scala
scala> val increase = (x: Int) => x + 1
increase: (Int) => Int = <function1>

scala> increase(10)
res: Int = 11
```

• Actually Scala allows to use also statements in function bodies (being Scala also imperative OOP):

```scala
val myStrangeFunc = (x: Int) => {
  println("how")
  println("are")
  println("you")
  x + 1
}
```
THE TYPES OF FUNCTIONS

• The type of a function is expressed in terms of the type of the arguments and of the result

• Example in Haskell:
 – given a function
 \[f \ <p1> \ <p2> \ldots \ <pn> = <expr> \]
 where \(<t1>\) is the type of \(<p1>, \ldots, <pn>\) and \(<tres>\) is the type of the result of the evaluation of \(<expr>\), then the type of the function is denoted as:
 \[<t1> \rightarrow \ldots \rightarrow <tn> \rightarrow <tres> \]
 – example: the type of a function add summing 2 integers
 \[add \ x \ y = x + y \]
 can be denoted as: \(\text{Int} \rightarrow \text{Int} \rightarrow \text{Int}\)
 where \(\text{Int}\) is the integer primitive type
TYPE EXPRESSION

• Explicit declaration of the type of a function (when defining the function)

\[
\text{succ} :: \text{Int} \rightarrow \text{Int} \\
\text{succ} \ n = n + 1
\]

• Haskell's static type system defines the formal relationships between types and values
 – ensuring that Haskell programs are type safe, i.e. it does not allow to mismatch the types

• If omitted, it is inferred by the system
 – type inference, discussed in next module
ONLY ONE PARAMETER IS ENOUGH: CURRYING

• High-order functions make it possible to express any N params function as a 1-param function
 – whose return param is a further function
• Example: the function with 2 parameters:
 $(\lambda \ x \ y . \ x + y)$
 can be expressed as:
 $(\lambda \ x . \ (\lambda \ y . \ x + y))$
 – the second function is 1-param function returning a 1-param function
• The transformation of a N-params function into a chain of 1-param function is called **currying**
 – “the function is curried”
CURRYING IN HASKELL

• In Haskell every function has actually just one parameter
 – the function definition \(f \ x \ y \ z = <\text{body}> \)
 is just syntactic sugar for: \(f \ x = \ y \to (\z \to ...) \)
 – example

\[
\begin{align*}
 \text{add} \ x &= \ y \to x + y \\
 \text{succ} &= \text{add} \ 1
\end{align*}
\]

> succ 4
5
CONDITIONAL EXPRESSIONS

- *if* control structure is modeled as a *conditional* expression
 - it denotes a value, which depends on the value of the predicate, rather than a sequence of statements
 - vs. command in imperative languages
- In Haskell:

  ```haskell
  if <expr>
    then <expr>
    else <expr>
  
  - example:

    ```haskell
 max x y z = if (x > y) && (y > z)
 then x
 else if (y > z)
 then y
 else z
    ```
GUARDS

• In Haskell *guards* can be used instead of conditional expressions to have a more declarative style in defining functions. Syntax:

```
<fname> <formal params>
| <guard1> = <exp1>
| <guard2> = <exp2>
...
| otherwise = <expn>
```

where guards `<guardn>` are boolean expressions expressing some condition on parameters

- otherwise is not compulsory

• Example:

```
max x y z
| x > y && x > z = x
| y > z = y
| otherwise = z
```

The meaning is: the definition of the function `<fname>` is `<exp1>` if the conditions `<guard1>` holds, otherwise is `<exp2>` if `<guard2>` holds,… If no conditions (guards) hold, then the definition is `<expn>`
NO ITERATION, ONLY RECURSION

• In stateless computational models, loops and iterations disappear and recursion becomes the fundamental construct for sequence control
  – iteration looses sense without assignment
• Examples of recursion in Haskell:

```haskell
fact n | n <= 1 = 1
 | otherwise = n*fact(n - 1)
```
DECLARATIVE STYLE

• Expressions don’t express sequences of commands to do
  – they are more a description of what to compute, not how to compute it
  – there could be different evaluation strategy expressing how to reduce the expression

• Benefits
  – no side effects
  – referential transparency
REFERENTIAL TRANSPARENCY

• Pure declarative style => referential transparency property
  = languages are referentially transparent

• Meaning:
  – "equals can be replaced by equals", no side effects

• Example
  – Given an expression
    ...x+x...
    where x = f a
  – the function application (f a) may be substituted for any free
    occurrence of x in the scope created by the where expression
    • e.g. in the x+x expression

• Referential transparency enables the possibility of doing equational
  reasoning
  – reasoning formally about programs and their properties
  – informally in writing and debugging programs
DECLARATIVE STYLE LIMITS

• Not every programming problem/aspect can be effectively modeled as a function
• Some side effects are unavoidable and wanted
  – I/O interactions
    • e.g. how to model a print command?
  – keeping track and updating some state
  – modeling actions & sequences of actions
  – keeping track of time
  – runtime errors
  – ...
• Mechanisms extending pure FP
  – monads (next module)
ERRORS

• The possibility to handle situation at runtime in which some kind of errors occur is an important aspect of any programming language
  – e.g. dividing a number by zero, getting an element from an empty list, etc
  – e.g. exception handling in modern OOP languages
• In the theory, these situations may correspond to cases in which a function cannot be evaluated or whose evaluation is undefined
  – or, alternatively, we may model a function to include the error values in its co-domain
    • not an ideal solution
ERRORS IN HASKELL

- Built-in error:: String -> a function
  - stops the program, printing a message
  - example:

    \[
    \text{tail} :: [a] -> a \\
    \text{tail} (_:xs) = xs \\
    \text{tail} [] = \text{error} \text{ "Error: attempting to get the tail of an empty list!"}
    \]

- note: la definizione in questo caso usa il meccanismo di pattern matching - che si vedrà nel prossimo modulo. Il meccanismo permette di definire una funzione mediante più definizioni, ognuna delle quali vale quando i parametri passati soddisfano un certo pattern
SEMANTICS OF COMPUTATION: EVALUATION
COMPUTATION AS REDUCTION

• **Evaluation** = the procedure used to transform a complex expression into its value

• In FP evaluation is based simply on expression **reduction**, which consists in **rewriting** an expression replacing sub-expressions with (simpler) expressions
  
  – in a complex expression, a sub expression of the form \((f \ x)\) is textually replaced by the body of the function in which formal parameters are replaced by the actual parameters
COMPUTATION AS REDUCTION: EXAMPLE

- Being the recursive function:
  \[ \text{fact } n = \text{if } (n \leq 1) \text{ then } 1 \text{ else } n \text{*fact}(n - 1) \]
  let's compute \text{fact } 3

- \text{fact } 3
  \[
  \rightarrow (\text{if } (n \leq 1) \text{ then } 1 \text{ else } n \text{*fact}(n - 1)) \ 3
  \rightarrow \text{if } (3 \leq 0) \text{ then } 1 \text{ else } 3 \text{*fact}(3 - 1)
  \rightarrow 3 \text{*fact}(3 - 1)
  \rightarrow 3 \text{*fact } 2
  \rightarrow 3*((\text{if } (n \leq 1) \text{ then } 1 \text{ else } n \text{*fact}(n - 1)) \ 2)
  \rightarrow 3*(\text{if } (2 \leq 1) \text{ then } 1 \text{ else } 2 \text{*fact}(1))
  \rightarrow 3*(2\text{*fact}(1))
  \rightarrow 3*(2*((\text{if } (n \leq 1) \text{ then } n \text{ else } n \text{*fact}(n - 1)) \ 1))
  \rightarrow 3*(2*(\text{if } (1 \leq 1) \text{ then } 1 \text{ else } 1 \text{*fact}(1 - 1))
  \rightarrow 3*(2*(1))
  \rightarrow 6
DIVERGING COMPUTATIONS

• In some cases rewriting is not going to converge
• For instance, let’s consider:

\[ f \ x = f \ (f \ x) \]

• Evaluating: \( f \ 1 \)

\[
\begin{align*}
f \ 1 \\
&\rightarrow ((f \ (f \ x)) \ 1) \\
&\rightarrow (f \ (f \ 1)) \\
&\rightarrow (f ((f \ (f \ x)) \ 1)) \\
&\rightarrow (f (f \ (f \ 1))) \\
&\rightarrow \ldots
\end{align*}
\]
REDUCTION - DEFINITIONS

• **Redex** (Red-ucible ex-pression)
  - a redex is an application of the form \((<f_{\text{exp}}><a_{\text{exp}}>)\), where \(<f_{\text{exp}}>\) is the expression of a function, either anonymous \((\lambda x.\text{body})\) or not

• **Reductum**
  - the reductum of a redex \(((\lambda x.\text{body})<a_{\text{exp}}>)\) is the expression which is obtained by replacing in \(<\text{body}>\) each occurrence of the formal parameter \(<a_{\text{exp}}>\) by a copy of \(<a_{\text{exp}}>\), *avoiding variable capture*

• **β-rule**
  - an expression \(<\text{exp}>\), in which a redex appears as a subexpression is reduced (or rewrites, simplifies) to \(<\text{exp1}>\) (notation \(<\text{exp}>\rightarrow<\text{exp1}>\)), where \(<\text{exp1}>\) is obtained from \(<\text{exp}>\) by replacing the redex by its reductum.
CAPTURE FREE SUBSTITUTIONS

• In an abstraction expression (\(\lambda x. <\text{body}>\)), the parameter can be renamed and the meaning of the expression does not change
  – e.g. (\(\lambda xy. x+y\)) is equivalent to (\(\lambda ab. a+b\))
• Renaming is necessary when the parameter passed to the function is the same of a free variable inside the body
  – free variable = variable not being bound by some \(\lambda\) as a parameter
  – e.g. ((\(\lambda x. \lambda y. x+y\)) y)
    – y is a free var in the outer expression and the name of a parameter in the abstraction
    – if we don’t rename the parameter inside the inner expression (\(\lambda y. x+y\)), the free variable is “captured”, reducing to (\(\lambda y. y +y\)) which is wrong
• In doing in the evaluation, renaming is performed to avoid capturing
  – ((\(\lambda x. \lambda y. x+y\)) y) \(\equiv\) ((\(\lambda x. \lambda w. x+w\)) y) \(\rightarrow\) \(\lambda w. y+w\)
EVALUATION

• A program is a series of value definitions
  – each of which inserts a new association into the environment
  – can require the evaluation of arbitrarily complex expression

• The semantics of computation is operationally given by the evaluation process
  – symbolic rewriting of strings (reduction), repeatedly using 2 main operations to simplify expressions until they reach a simple form which immediately denotes a value
    1. simple search of an identifier through the environment
    2. when an identifier is determined as being bound in an environment, replace the identifier by its definition

• Termination
  – the evaluation process proceeds until the expression is a value
  – values are expressions which cannot be further rewritten
    • values of primitive type, functional values
REMARK

• Every expression of the form \((\lambda x. \langle \text{exp} \rangle)\) represents directly a value, so redexes possibly contained in \(\langle \text{exp} \rangle\) are never rewritten until the expression is applied to some argument
  – in other words, in functional languages evaluation does not occur under abstractions
• So for instance the result of the evaluation of the expression:
  \((\lambda x.((\lambda y.y+1) \ 2))\)
  is not the primitive value 3, but the expression itself:
  \((\lambda x.((\lambda y.y+1) \ 2))\)
EVALUATION STRATEGIES

• An expression can have multiple redexes.
• For example, given the function definitions:
  
  \[
  \begin{align*}
  K \ x \ y &= x \\
  r \ z &= r(r(z)) \\
  D \ u &= \text{if } (u = 0) \\
  &\quad \text{then } 1 \\
  &\quad \text{else } u \\
  \text{succ } v &= v + 1
  \end{align*}
  \]

  then, what is result of the evaluation: \( K (D (\text{succ } 0)) (r \ 2) \)?

• 4 possible redexes...
  
  – \( K (D (\text{succ } 0)) \)
  – \( D (\text{succ } 0) \)
  – \( \text{succ } 0 \)
  – \( r \ 2 \)
EVALUATION STRATEGIES

• Two main approaches
  – applicative order
    • also called *call by value*
  – normal order
    • also called *call by name*
  – lazy evaluation
    • also called *call by need*
    • variant of the call by name
APPLICATIVE ORDER / CALL BY VALUE

• Also called *eager* evaluation or *strict* evaluation
• The leftmost, innermost redex is evaluated first
  – that is: a redex is evaluated only if the expression which constitutes its argument part is already a value
• Procedure:
  – scan the expr to be evaluated from the left, choosing the first application encountered. Let it be \((f_\text{exp} \ a_\text{exp})\)
  – first evaluate (recursively applying this method) \(f_\text{exp}\) until it has been reduced to a value (of a functional type) of the form \((\lambda x. \ <\text{body}>))\)
  – evaluate the argument part, \(a_\text{exp}\), of the application, so that it is reduced to a value \(\text{val}\)
  – finally reduce the redex \((((\lambda x. \ <\text{body}>)) \ \text{val})\) and repeat from 1)
APPLICATIVE ORDER / CALL BY VALUE: EXAMPLE

- evaluation of: \((K (D \ (\text{succ } 0))) \ (r \ 2)\)
  \((K (D \ (\text{succ } 0))) \ (r \ 2)\)
  \(\rightarrow (K (D ((\lambda v. v + 1) \ 0))) \ (r \ 2)\)
  \(\rightarrow (K (D \ 1)) \ (r \ 2)\)
  \(\rightarrow (K ((\lambda u. \text{if } (u = 0) \text{ then } 1 \text{ else } u) \ 1)) \ (r \ 2)\)
  \(\rightarrow (K \ 1)(r \ 2)\)
  \(\rightarrow ((\lambda x. \lambda y. x) \ 1)(r \ 2)\)
  \(\rightarrow (\lambda y. 1) \ (r \ 2)\)
  \(\rightarrow (\lambda y. 1) \ (r (r \ 2))\)
  \(\rightarrow (\lambda y. 1) \ (r (r (r \ 2)))\)
  ...
- the computation is diverging
APPLICATIVE ORDER / CALL BY VALUE

• Adopted by Lisp, Scheme, ML
  – not pure, side effects possible
NORMAL ORDER / CALL-BY-NAME

• Also called *non-strict* evaluation
• The leftmost, *outermost* redex is evaluated first
  – that is: a redex is evaluated before its argument part
• Procedure
  – scan the expr to be evaluated from left, choosing the first application. Let it be \((<f\_exp> <a\_exp>)\)
  – first evaluate \(f\_exp\) until it has been reduced to a value \((\lambda x. <body>)\)
  – reduce the redex \(((\lambda x. <\exp>) <a\_exp>)\) using the beta-rule and repeat the procedure
NORMAL ORDER / CALL-BY-NAME: EXAMPLE

• evaluation of: \((K (D (\text{succ } 0))) \ (r \ 2)\)
  \((K (D (\text{succ } 0))) \ (r \ 2)\)
  \(\rightarrow (\lambda y. D (\text{succ } 0)) \ (r \ 2)\)
  \(\rightarrow D (\text{succ } 0)\)
  \(\rightarrow \text{if (succ } 0) = 0 \text{ then } 1 \text{ else (succ } 0)\)
  \(\rightarrow \text{if (1 = 0) then } 1 \text{ else (succ } 0)\)
  \(\rightarrow \text{succ } 0\)
  \(\rightarrow 1\)

• the result of the evaluation in this case is the value 1
LAZY EVALUATION

• Strategy also called **call by need**
• Variant of the evaluation by name that avoid to reduce a redex multiple times
  – the first time a redex is evaluated, the result is propagated to every point of the expression
  – not string rewriting, but *graph* rewriting
  – adopted by all modern pure FP languages, such as Haskell, Miranda
• The example:

  ...  
  -> if (succ 0) = 0 then 1 else (succ 0)  
  -> if (1 = 0) then 1 else 1  
  -> 1
THEOREM

• Can different strategies produce distinct values for the same expression? For pure functional programming the answer is given by the following fundamental theorem:

Let <exp> be a closed expression. If <exp> reduces to a primitive value <val> using any of the three strategy, then <exp> reduces to <val> following the **by-name** (normal order) strategy. If <exp> diverges using the by-name strategy, then it diverges also in the other 2 strategies.

• closed expressions are expressions with all variables are bound.
• primitive values do not include functional values

• Very important property which holds only if we consider pure FP, without side effects
  – property fundamental for reasoning about programs
EVALUATION STRATEGIES IN MODERN FP LANGUAGES

• Modern pure FP languages adopt lazy evaluation (call-by-name, normal-order)
  – examples: Haskell, Miranda
• FP Languages that allow for side effects (e.g. changing the state of a var) typically adopt call-by-value
  – examples: Lisp, Scheme, ML
BIBLIOGRAPHY

• Gabbrielli and Martini. “Programming Languages: Principles and Paradigms”. Chapter 11
• Thompson. “The Craft of Functional Programming”