Introduction to the Course

Distributed Systems
Sistemi Distribuiti

Andrea Omicini
andrea.omicini@unibo.it

Dipartimento di Informatica – Scienza e Ingegneria (DISI)
Alma Mater Studiorum – Università di Bologna a Cesena

Academic Year 2014/2015
1. Distributed Systems: Why?

2. Distributed Systems: The Course
 - Goal & Structure
 - What to Do
Outline

1. Distributed Systems: Why?

2. Distributed Systems: The Course
 - Goal & Structure
 - What to Do
Nowadays, computational systems...

- ... have become pervasive, since they are everywhere, and tend to affect every aspect of our everyday life and activity.
- ... are at the core of most (if not all) artificial systems, so that every principled discipline for modelling / engineering computational systems affects the modelling and engineering of almost every sort of artificial systems.
Pervasiveness of computations

- how many computational systems today in this room?
 - in our cars, at home, in the workplaces, in hospitals, in public places?
- we live immersed in a sort of *computational cloud*, where an incredible (and always increasing) number of computations are performed at every instant
 - distributed, *concurrent* computations
 - either controlled / triggered, or *autonomous* computations
Pervasiveness of interaction

- almost any computational system of today comes equipped with ICT technologies for interacting with other computational systems.
- computational devices *continuously interact*
 - with humans
 - with each others
 - with the physical *environment* and its *resources*
The physical nature of artificial systems...

... adds complexity to computational components / systems
- in terms of physical *distribution*
- in terms of temporal *distribution*
- in terms of *unpredictability* of the scenarios
What is distributed?

- computational units
- communication channels
- data / information / knowledge
 - along with their representations
- sensors, actuators, ...
 - the boundaries between the systems and the surrounding environment are topologically sparse
On the Notion of Distribution II

Spatio-temporal unity of systems is lost
- there is no longer a notion of \textit{system time}, nor a system \textit{location}
- system components, at different level of abstraction, are only \textit{partially related}
 - temporally & topologically

A number of assumptions over systems no longer hold
- system \textit{events no longer} constitute a totally-ordered set
 - generally speaking, partial ordering is the only feature
- admissible \textit{interactions} among system components \textit{no longer} depend on compresence
 - in space / time
 - within the same physical / virtual topology
Building artificial systems...

- nowadays means building *distributed systems*
- whose core is represented by *distributed computational systems*
- which are to be *modelled* and *engineered*
Modelling distributed systems...
- ... involves new theoretical problems
- so, it requires new theoretical frameworks, models, abstractions, techniques

Engineering distributed systems...
- ... involves new practical problems
- so, it requires new technologies, infrastructures, methods, methodologies
Outline

1 Distributed Systems: Why?

2 Distributed Systems: The Course
 - Goal & Structure
 - What to Do
Goals of the Course

Students of this course should

- Learn the **fundamental issues** of distributed systems
- Re-think some of the most widely used **technologies** in nowadays distributed systems
 - **object-based** as a general trend in moving legacy models & technologies toward distributed systems
 - **web-based** as the most relevant case of today widespread distributed, knowledge-intensive systems
- Take a look at some of the hottest **new trends**
- Experiment with **novel distributed technologies**
 - **coordination-based** and **agent-based** as general-purpose approaches to advanced technologies for intelligent & pervasive systems
Structure of the Course: Main Topics I

Generality on distributed systems
- Basic problems and definitions
- Software architectures
- Middleware & infrastructure

Issues of distributed systems
- Communication
- Naming
- Synchronisation
- Consistency & replication
- Fault tolerance
Main sorts of distributed systems

- Web-based systems (*generality*)
- From distributed object-based systems to agent-based systems
- Agent-based systems
- Coordination-based systems
- Cloud-based systems
Material of the Course: Main Book

[TvS07a]
Distributed Systems. Principles and Paradigms

[TvS07b]
Sistemi Distribuiti
Pearson Education Italia, Torino, Italia, 2ª edizione.

This book represents the main guide throughout the first part of the course—basics & issues.
Material of the Course: Other Books I

[CDKB12]
Coulouris, G., Dollimore, J., Kindberg, T. and Blair, G. (2012)
Distributed Systems. Concepts and Design
Pearson

[Bir05]
Birman, K.P. (2005)
Reliable Distributed Systems. Technologies, Web Services, and Applications
Springer
[KS11]

Kshemkalyani, A.D. and Singhal, M. (2011)
Distributed Computing. Principles, Algorithms, and Systems
Cambridge University Press
The last part of the course, on the main sorts of distributed systems,

- will contain some references to the Tanenbaum & van Steen book chapters
- but will mainly evolve according to a different perspective, as reported on the course’s slide.
Schedule

Classes

- Tuesday, h. 10-13, Room B, via Sacchi 3
- Thursday, h. 10-13, Room B, via Sacchi 3
Laboratory

Where, when, who

- Tuesday, h. 10–13, Lab 3, via Sacchi 3
- with Prof. Andrea Omicini & Ing. Stefano Mariani

http://apice.unibo.it/xwiki/bin/view/Courses/Sd1415Lab

- The Lab will be the place where the technologies for distributed systems are presented and experimented
- It will be organised on a week-per-week basis
- Please check
 http://apice.unibo.it/xwiki/bin/view/Courses/Sd1415Schedule
Attitude toward the Course

Attending lessons is important

- The topic is really general and rich of subtleties
- A lot of “implicit knowledge” is transferred orally

Material may be enough to pass the exam, anyway...

- ... for those who have problems attending lessons—like, worker students
- ... or, for those who just hate the Professor’s voice / face / slides / attitude / whatever
Registering to the Course

Professors-students lists... are provided for free by the Alma Mater Studiorum. They mostly work and we will use them here.

Please register soon... to the list andrea.omicini.SD-1415 using password 1415SD like, say, today.
References

Kenneth P. Birman.
Reliable Distributed Systems. Technologies, Web Services, and Applications.

George Coulouris, Jean Dollimore, Tim Kindberg, and Gordon Blair.
Distributed Systems. Concepts and Design.

Ajay D. Kshemkalyani and Mukesh Singhal.

Andrew S. Tanenbaum and Marteen van Steen.
Distributed Systems. Principles and Paradigms.
Introduction to the Course

Distributed Systems
Sistemi Distribuiti

Andrea Omicini
andrea.omicini@unibo.it

Dipartimento di Informatica – Scienza e Ingegneria (DISI)
Alma Mater Studiorum – Università di Bologna a Cesena

Academic Year 2014/2015