Introduction to Monte Carlo in Finance

Giovanni Della Lunga

WORKSHOP IN QUANTITATIVE FINANCE

Bologna - May 12-13, 2016
Introduction

Outline

1. Introduction
 - Some Basic Ideas
 - Theoretical Foundations of Monte Carlo Simulations

2. Single Asset Path Generation
 - Definitions
 - Exact Solution Advancement
 - Numerical Integration of SDE
 - The Brownian Bridge

3. Variance Reduction Methods
 - Antithetic Variables
 - Moment Matching

4. Multi Asset Path Generation
 - Choleski Decomposition

5. Valuation of European Option with Stochastic Volatility
 - Square-Root Diffusion: the CIR Model
 - The Heston Model

6. Valuation of American Option

7. The Hull and White Model

8. MCS for CVA Estimation
 - Definitions
 - CVA of a Plain Vanilla Swap: the Analytical Model
 - CVA of a Plain Vanilla Swap: the Simulation Approach
What is Monte Carlo?

- From a quite general point of view (not a really precise one, actually) with the term Monte Carlo usually one means a numerical technique which makes use of random numbers for solving a problem.
- For the moment we assume that you can understand, at least intuitively, what a random number is.
- Later we will return to the definition of a random number, and, as we shall see, this will lead to absolutely not trivial issues.
- Let’s start immediately with some practical examples (we’ll try to give a more formal definition later).
What is Monte Carlo?

- Let’s consider two problems apparently very different in nature;
- The first one is of probabilistic nature: the assessment of the premium for an option of European type option on a stock that does not pay dividends;
- The second one is an issue of purely deterministic nature: the determination of the area enclosed by a plane figure, such as a circle.
What is Monte Carlo?

- Let’s start with the first problem. The pricing of an option is usually dealt with in the context of so-called risk-neutral valuation.

- Indicating with $f[S(T)]$ where S is the value of the underlying asset, the value of the option at maturity T, the value today, $f[S(t)]$, is given by

$$f(S(t)) = \mathbb{E}^Q [P(t, T)f[S(T)]]$$

- \mathbb{E}^Q being the risk-neutral expectation value and $P(t, T)$ the discount function between t and T.

- Let’s assume, for simplicity, to know with certainty the value of the discount function so the problem can be put in the form

$$f(S(t)) = e^{-r(T-t) \mathbb{E}^Q [f[S(T)]]}$$
What is Monte Carlo?

- The formulation of the problem makes clear its inherently probabilistic nature.
- The application of the Monte Carlo method in this case is reduced essentially to the generation of a sufficiently high number of estimates of $f[S(T)]$ from which to extract the average value.

⚠️ To this end it is necessary first to introduce a hypothesis on how the underlying stock price evolves over time;
Let’s suppose for example that the asset price follows a geometric Brownian motion, according to this hypothesis the rate of change of the price in a range of infinitesimal time is described by

$$dS = rSdt + S\sigma dw$$

where r is the risk free rate, σ is the volatility of S returns and dw is a brownian motion;

First of all we choose a discrete version of this SDE:

$$\Delta S = rS\Delta t + S\sigma \epsilon \sqrt{\Delta T}$$

where ϵ is a random number drawn from a normal distribution (we assume for the moment to have some procedure that allows us to generate random numbers with probability distribution assigned);
What is Monte Carlo?

- Once we have the simulated value of the underlying at time T, we are able to derive the value of the option at the same date;
- Assuming for example that the option is a CALL we simply write

$$f[S(T)] = \max(S(T) - K, 0)$$

where K is the strike price.
- By repeating the above procedure a very large number of times we are able to obtain a distribution of values for $f[S(T)]$ from which it is possible to extract the expectation value ...
What is Monte Carlo?
Interlude - Let’s start coding...
Python, R
The Python world developed the IPython notebook system.
Notebooks allow you to write text, but you insert code blocks as "cells" into the notebook.
A notebook is interactive, so you can execute the code in the cell directly!
Recently the Notebook idea took a much enhanced vision and scope, to explicitly allow languages other than Python to run inside the cells.
Thus the Jupyter Notebook was born, a project initially aimed at Julia, Python and R (Ju-Pyt-e-R). But in reality many other languages are supported in Jupyter.
Out toolbox: Jupyter, Python, R

The Jupyter Notebook is a web application that allows you to create and share documents that contain live code, equations, visualizations and explanatory text. Uses include: data cleaning and transformation, numerical simulation, statistical modeling, machine learning and much more.
Out toolbox: Jupyter, Python, R
Out toolbox: Jupyter, Python, R

- **The IRKernel**
- To enable support of a new language means that somebody has to write a "kernel".
- The kernel for R is called IRKernel (available at github).
- **How do you use Jupyter?**
- Once Jupyter is up and running, you interact with it on a web page.
Benefits of using Jupyter

Jupyter was designed to enable sharing of notebooks with other people. The idea is that you can write some code, mix some text with the code, and publish this as a notebook. In the notebook they can see the code as well as the actual results of running the code.

This is a nice way of sharing little experimental snippets, but also to publish more detailed reports with explanations and full code sets. Of course, a variety of web services allows you to post just code snippets (e.g. gist). What makes Jupyter different is that the service will actually render the code output.

One interesting benefit of using Jupyter is that Github magically renders notebooks. See for example, the github Notebook gallery.
Notebook

- **GitHub**: polyhedron-gdl
- **Notebooks**: mcs_1
What is Monte Carlo?

- Let’s now consider the second problem;
- Take a circle inscribed in a unit square. Given that the circle and the square have a ratio of areas that is $\pi/4$, the value of π can be approximated using a Monte Carlo method:
What is Monte Carlo?

1. Draw a square on the ground, then inscribe a circle within it.
2. Uniformly scatter some objects of uniform size (grains of rice or sand) over the square.
3. Count the number of objects inside the circle and the total number of objects.
4. The ratio of the two counts is an estimate of the ratio of the two areas, which is $\pi/4$. Multiply the result by 4 to estimate π.

$n = 12000 \ (\pi \approx 3.14633)$
What is Monte Carlo?

- In this procedure the domain of inputs is the square that circumscribes our circle.
- We generate random inputs by scattering grains over the square then perform a computation on each input (test whether it falls within the circle).
- Finally, we aggregate the results to obtain our final result, the approximation of \(\pi \).
Notebook

- **GitHub**: polyhedron-gdl;
- **Notebooks**: mcs_2;
Monte Carlo is Integration!

- There is a formal connection between the use of the Monte Carlo method and the concept of integration of a function.
- First of all we observe how the problems discussed in the previous paragraph can be attributed both to the calculation of integrals.
- The case related to the area of the circle is evident.
- The price of an option as we have seen is nothing more than the discounted value of the expectation value of the price at maturity, the underlying risk factor (the stock price) is distributed according to a log-normal distribution, therefore, we have (for the CALL case):

\[
C(t, S) = e^{-r(T-t)} \int_{-\infty}^{+\infty} h\left[S \exp\left((r - q - \sigma^2/2)(T - t) - \sigma x \sqrt{T - t}\right)\right] e^{-\frac{1}{2}x^2} dx
\]

where \(h(S) = |S - K|^+ \).
Monte Carlo is Integration!

More in general we can state that each extraction of a sample of random numbers can be used as an estimator of an integral.

As an example consider the case relating to the integration of a function of a real variable;

by a suitable change of variable, we can always bring us back to the simplest case in which the integration interval is between 0 and 1:

\[
I = \int_{0}^{1} f(x) \, dx
\]
Monte Carlo is Integration!

- The key point of our argument is to recognize that the expression written above is also the expectation value of the function f at values of a random variable uniformly distributed in the range $[0, 1]$.
- It becomes possible to estimate the value of our integral using an arithmetic mean of n values of $f(U_i)$ where each U_i is a sample from a uniform distribution in $[0, 1]$.
- In other words we can say that the quantity

$$\tilde{I}_n = \frac{1}{n} \sum_{i=1}^{n} f(U_i)$$

is an unbiased estimator of I.
Monte Carlo is Integration!

- The variance of the estimator is
 \[\text{var} \left(\tilde{I}_n \right) = \frac{\text{var}(f(U_i))}{n} \]

- the mean square error of the estimator, which can be interpreted as the mean square error of the Monte Carlo simulation, decreases with increasing n.

- This result is completely independent of the dimensionality of the problem.

- It’s this last characteristic that makes attractive the Monte Carlo method for solving problems with a large number of dimensions.

- In this case typically the Monte Carlo method converge to the final value faster than the traditional numerical methods.
Pricing a Call Option

- It’s worth to recast the pricing problem into a simple integral formulation in order to gain some insight into the general problem;
- So let’s consider again the payoff of a simple plain vanilla option

\[
e^{-rT} \mathbb{E}^Q [h(S_T)] = e^{-rT} \mathbb{E}^Q \left[h\left(S_0 e^{\log(S_T/S_0)} \right) \right]
\]

- By a simple application of Ito’s lemma is easy to demonstrate that the variable \(X = \log(S_T/S_0) \) has a normal distribution with mean \(m = (r - \frac{1}{2} \sigma^2) T \) and variance \(s = \sigma^2 T \).
- So we can write

\[
C(S, t) = e^{-rT} S_0 \int_0^{+\infty} \max[e^X - K, 0] e^{-\frac{(X-m)^2}{2s^2}} dX
\]
Pricing a Call Option

Let’s now recall the fundamental **probability integral transform** which relates to the result that data values that are modelled as being random variables from any given continuous distribution can be converted to random variables having a uniform distribution.

This result states that if a random variable X has a continuous distribution for which the cumulative distribution function (CDF) is F_X. Then the random variable Y defined as

$$Y = F_X(X)$$

has a uniform distribution;
Pricing a Call Option

- This means that, in our case, we can say that the variable
 \[u = \Phi[X; m, u], \quad u \to 1 \text{ when } X \to +\infty \]

 has a uniform distribution;
- From the previous relation we find (within a normalization factor)
 \[du = \frac{d\Phi[X; m, u]}{dX} dX \Rightarrow dX = \frac{1}{e^{-\frac{(X-m)^2}{2s^2}}} du \]
- and finally we can write our integral in the form
 \[
 C(S, t) = \int_0^1 f(u) du
 \]

 where \(f(u) = e^{-rT} \max[S_0 \exp(\Phi^{-1}(u; m, s)) - K, 0] \)
```python
def f(u, S0, K, r, sigma, T):
    m = (r - 0.5 * sigma * sigma) * T
    s = sigma * sqrt(T)
    f_u = exp(-r * T) *
          np.maximum(S0 * exp(scnorm.ppf(u, m, s)) - K, 0)
    return f_u

u = rand(1000000)
f_u = f(u, S0, K, r, sigma, T)

print(mean(f_u))
```
Pricing a Call Option - The Integrand Function
Notebook

GitHub: polyhedron-gdl;
Notebooks: mcs_3;
Feynman–Kac formula

- The **Feynman–Kac formula** named after Richard Feynman and Mark Kac, establishes a link between parabolic partial differential equations (PDEs) and stochastic processes.
- It offers a method of solving certain PDEs by simulating random paths of a stochastic process. Conversely, an important class of expectations of random processes can be computed by deterministic methods.
- Consider the PDE

\[
\frac{\partial u}{\partial t}(x, t) + \mu(x, t) \frac{\partial u}{\partial x}(x, t) + \frac{1}{2} \sigma^2(x, t) \frac{\partial^2 u}{\partial x^2}(x, t) - V(x, t)u(x, t) + f(x, t) = 0
\]

subject to the terminal condition

\[u(x, T) = \psi(x)\]
Then the Feynman–Kac formula tells us that the solution can be written as a conditional expectation

\[u(x, t) = E^Q \left[\int_t^T e^{-\int_t^\tau V(X_{\tau'}, \tau')} \, d\tau' \, f(X_r, r) \, dr + e^{-\int_t^T V(X_{\tau'}, \tau')} \, d\tau' \, \psi(X_T) \, \bigg| \, X_t = x \right] \]

under the probability measure \(Q \) such that \(X' \) is an Ito process driven by the equation

\[dX = \mu(X, t) \, dt + \sigma(X, t) \, dW^Q \]
Valuing a derivative contract

A derivative can be perfectly replicated by means of a self-financing dynamic portfolio whose value exactly matches all of the derivative flows in every state of the world. This approach shows that the values of the derivative (and of the portfolio) solves the following PDE

$$\frac{\partial f}{\partial t} + \frac{\partial f}{\partial S} rS + \frac{1}{2} \frac{\partial^2 f}{\partial S^2} \sigma^2 S^2 = fr \quad (1)$$

with the terminal condition at T that is the derivative’s payoff

$$f(T, S(T)) = \text{payoff}$$
Valuing a derivative contract

- According to the Feynmann-Kac formula, if \(f(t_0, S(t_0)) \) solves the B-S PDE, then it is also solution of

\[
 f(t_0, S(t_0)) = \mathbb{E} \left[e^{-r(T-t_0)} f(T, S(T)|\mathcal{F}_{t_0}) \right]
\]

- i.e. it’s the expected value of the discounted payoff in a probability measure where the evolution of the asset is

\[
dS = rSdt + \sigma Sdw
\]

- This probability measure is the **Risk Neutral Measure**
Valuing a derivative contract

- Since there exist such an equivalence, we can compute option prices by means of two numerical methods
- PDE: finite difference (explicit, implicit, crank-nicholson) suitable for optimal exercise derivatives;
- Integration
 - Quadrature Methods;
 - Monte Carlo Methods
Outline

1 Introduction
 - Some Basic Ideas
 - Theoretical Foundations of Monte Carlo Simulations

2 Single Asset Path Generation
 - Definitions
 - Exact Solution Advancement
 - Numerical Integration of SDE
 - The Brownian Bridge

3 Variance Reduction Methods
 - Antithetic Variables
 - Moment Matching

4 Multi Asset Path Generation
 - Choleski Decomposition

5 Valuation of European Option with Stochastic Volatility
 - Square-Root Diffusion: the CIR Model
 - The Heston Model

6 Valuation of American Option

7 The Hull and White Model

8 MCS for CVA Estimation
 - Definitions
 - CVA of a Plain Vanilla Swap: the Analytical Model
 - CVA of a Plain Vanilla Swap: the Simulation Approach
As we have repeated ad nauseam, the value of a derivative security with payoffs at a known time T is given by the expectation of its payoff, normalized with the numeraire asset;

The value of an European derivative whose payoff depends on a single underlying process, $S(t)$, is given by

$$V[S(0), 0] = B(0)E^B \left[\frac{V(S(T), T)}{B(T)} \right]$$ \hspace{1cm} (2)$$

where all stochastic processes in this expectation are consistent with the measure induced by the numeraire asset $B(t)$.
Scenario Nomenclature

- We consider an underlying process $S(t)$ described by the sde

$$dS(t) = a(S, t)dt + b(S, t)dW$$ (3)

- A scenario is a set of values $\hat{S}^j(t_i), \ i = 1, \ldots, I$ that are an approximation to the j – th realization, $S^j(t_i)$, of the solution of the sde evaluated at times $0 \leq t_i \leq T, \ i = 1, \ldots, I$;

- A scenario is also called a trajectory

- A trajectory can be visualized as a line in the state-vs-time plane describing the path followed by a realization of the stochastic process (actually by an approximation to the stochastic process).
For example, the Black and Scholes model assumes a market in which the tradable assets are:

- A risky asset, whose evolution is driven by a geometric brownian motion

\[dS = \mu S dt + \sigma S dw \Rightarrow S(T) = S(t_0) e^{(\mu - \frac{1}{2} \sigma^2)(T-t_0) + \sigma [w(T) - w(t_0)]} \]

- the money market account, whose evolution is deterministic

\[dB = Br dt \Rightarrow B(T) = B(t_0) e^{r(T-t_0)} \]
Scenario Construction

There are several ways to construct scenario for pricing:

1. Constructing a path of the solution to the SDE at times t_i by exact advancement of the solution;
 - This method is only possible if we have an analytical expression for the solution of the stochastic differential equation.
2. Approximate numerical solution of the stochastic differential equation;
 - This is the method of choice if we cannot use the previous one; Just as in the case of ODE there are numerical techniques for discretizing and solving SDE.
Exact Solution Advancement

- Example: Log-normal process with constant drift and volatility

\[\text{SDE} \Rightarrow \frac{dS}{S} = \mu dt + \sigma dw \]

\[\text{SOLUTION} \Rightarrow S(T) = S(t_0)e^{(\mu - \frac{1}{2}\sigma^2)(T-t_0) + \sigma[w(T)-w(t_0)]} \]

- How to obtain a sequence of Wiener process?

\[w(t_i) = w(t_{i-1}) + \sqrt{t_i - t_{i-1}}Z \quad Z \sim N(0,1) \]
Defining the outcomes of successive drawings of the random variable Z corresponding to the $j-th$ trajectory by Z^j_i, we get the following recursive expression for the $j-th$ trajectory of $S(t)$:

$$S^j(t_i) = S^j(t_{i-1}) \exp \left[\left(\mu - \frac{1}{2} \sigma^2 \right)(t_i - t_{i-1}) + \sigma \sqrt{t_i - t_{i-1}} Z^j_i \right]$$
Some observations are in order...

The set $w(t_i)$ must be viewed as the components of a vector of random variables with a multidimensional distribution. This means that for a fixed j Z_j^i are realizations of a multidimensional standard normal random variable which happen to be independent;

Whether we view the Z_j^i as coming from a multidimensional distribution of independent normals or as drawings from a single one-dimensional distribution does not affect the outcome as long as the Z_j^i are generated from pseudo-random numbers;

This distinction, however, is conceptually important and it becomes essential if we generate the Z_j^i not from pseudo-random numbers but from quasi-random sequences.
The numerical integration of the SDE by finite difference is another way of generating scenarios for pricing;

In the case of the numerical integration of ordinary differential equations by finite differences the numerical scheme introduces a discretization error that translates into the numerical solution differing from the exact solution by an amount proportional to a power of the time step.

This amount is the truncation error of the numerical scheme.
In the case of the numerical integration of SDE by finite differences, the interpretation of the numerical error introduced by the discretization scheme is more complicated;

Unlike the case of ODE where the only thing we are interested in computing is the solution itself, when dealing with SDE there are two aspects that interest us:

- One aspect is the accuracy with which we compute the trajectories or paths of a realization of the solution
- The other aspect is the accuracy with which we compute functions of the process such as expectations and moments.
Numerical Integration of SDE

- The order of accuracy with which a given scheme can approximate trajectories of the solution is not the same as the accuracy with which the same scheme can approximate expectations and moments of functions of the trajectories;

- The convergence of the numerically computed trajectories to the exact trajectories is called strong convergence and the order of the corresponding numerical scheme is called order of strong convergence;

- The convergence of numerically computed functions of the stochastic process to the exact values is called weak convergence and the related order is called order of weak convergence.
Numerical Integration of SDE

- We assume that the stock price S_t is driven by the stochastic differential equation (SDE)

$$dS(t) = \mu(S, t)dt + \sigma(S, t)dW_t$$ \hspace{1cm} (6)

where W_t is, as usual, Brownian motion.

- We simulate S_t over the time interval $[0; T]$, which we assume to be discretized as $0 = t_1 < t_2 < \cdots < t_m = T$, where the time increments are equally spaced with width dt.

- Equally-spaced time increments is primarily used for notational convenience, because it allows us to write $t_i - t_{i-1}$ as simply dt. All the results derived with equally-spaced increments are easily generalized to unequal spacing.
Numerical Integration of SDE

- **Euler Scheme**
 - The simplest way to discretize the process in Equation (6) is to use Euler discretization

 \[
 \text{EULER} \Rightarrow \hat{S}(t_{i+1}) = \hat{S}(t_i) + \mu[\hat{S}(t_i), t_i] \Delta t + \sigma[\hat{S}(t_i), t_i] (w(t_{i+1}) - w(t_i))
 \]

- **Milshstein Scheme**

 \[
 \text{MILSHSTEIN} \Rightarrow \text{EULER} + \frac{1}{2} \sigma[\hat{S}(t_i)] \frac{\partial \sigma[\hat{S}(t_i)]}{\partial S} \left[(w(t_{i+1}) - w(t_i))^2 - \Delta t \right]
 \]

 This scheme is described in Glasserman and in Kloeden and Platen for general processes, and in Kahl and Jackel for stochastic volatility models. The scheme works for SDEs for which the coefficients \(\mu(S_t) \) and \(\sigma(S_t) \) depend only on \(S \), and do not depend on \(t \) directly.
Notebook

- **GitHub**: polyhedron-gdl;
- **Notebooks**: mcs_sde_solution;
- **Code**: mcs_sde_solution.py;
The Brownian Bridge

Assume you have a Wiener process defined by a set of time-indexed random variables $W(t_1), W(t_2), ..., W(t_n)$.

How do you insert a random variable $W(t_k)$ where $t_i \leq t_k \leq t_{i+1}$ into the set in such a manner that the resulting set still constitutes a Wiener process?

The answer is: with a Brownian Bridge!

The Brownian Bridge is a sort of interpolation that allows you to introduce intermediate points in the trajectory of a Wiener process.
The Brownian Bridge

- Brownian Bridge Construction
- Given $W(t)$ and $W(t + \delta t_1 + \delta t_2)$ we want to find $W(t + \delta t_1)$;
- We assume that we can get the middle point by a weighted average of the two end points plus an independent normal random variable:

$$W(t + \delta t_1) = \alpha W(t) + \beta W(t + \delta t_1 + \delta t_2) + \lambda Z$$

where α, β and λ are constants to be determined and Z is a standard normal random variable.
We have to satisfy the following conditions:

\[
\begin{align*}
\text{cov}[W(t + \Delta t_1), W(t)] &= \min(t + \Delta t_1, t) = t \\
\text{cov}[W(t + \Delta t_1), W(t + \Delta t_1 + \Delta t_2)] &= t + \Delta t_1 \\
\text{var}[W(t + \Delta t_1)] &= t + \Delta t_1
\end{align*}
\]

\[
\begin{align*}
\alpha + \beta &= 1 \\
\alpha t + \beta(t + \Delta t_1 + \Delta t_2) &= t + \Delta t_1 \\
\alpha^2 t + 2\alpha\beta t + \beta^2 (t + \Delta t_1 + \Delta t_2) + \lambda^2 &= t + \Delta t_1
\end{align*}
\]

which are equivalent to:

\[
\begin{align*}
\alpha &= \frac{\Delta t_2}{\Delta t_1 + \Delta t_2} \\
\beta &= 1 - \alpha \\
\gamma &= \sqrt{\Delta t_1 \alpha}
\end{align*}
\]
The Brownian Bridge

- We can use the brownian bridge to generate a Wiener path and then use the Wiener path to produce a trajectory of the process we are interested in;
- The simplest strategy for generating a Wiener path using the brownian bridge is to divide the time span of the trajectory into two equal parts and apply the brownian bridge construction to the middle point. We then repeat the procedure for the left and right sides of the time interval.
The Brownian Bridge

- Notice that as we fill in the Wiener path, the additional variance of the normal components we add has decreasing value;
- Of course the total variance of all the Wiener increments does not depend on how we construct the path, however the fact that in the brownian bridge approach we use random variables that are multiplied by a factor of decreasing magnitude means that the importance of those variables also decreases as we fill in the path;
- The dimension of the random variables with larger variance need to be sampled more efficiently than the dimension with smaller variance;
Notebook

GitHub: polyhedron-gdl;
Code: mcs_brownian_bridge.py;
Outline

1. Introduction
 - Some Basic Ideas
 - Theoretical Foundations of Monte Carlo Simulations

2. Single Asset Path Generation
 - Definitions
 - Exact Solution Advancement
 - Numerical Integration of SDE
 - The Brownian Bridge

3. Variance Reduction Methods
 - Antithetic Variables
 - Moment Matching

4. Multi Asset Path Generation
 - Choleski Decomposition

5. Valuation of European Option with Stochastic Volatility
 - Square-Root Diffusion: the CIR Model
 - The Heston Model

6. Valuation of American Option

7. The Hull and White Model

8. MCS for CVA Estimation
 - Definitions
 - CVA of a Plain Vanilla Swap: the Analytical Model
 - CVA of a Plain Vanilla Swap: the Simulation Approach
Variance Reduction Methods

- In numerical analysis there is an informal concept known as the curse of dimensionality. This refers to the fact that the computational load (CPU time, memory requirements, etc...) may increase exponentially with the number of dimensions of the problem;

- The computational work needed to estimate the expectation through MC does not depend explicitly on the dimensionality of the problem, this means that there is no curse of dimensionality in MC computation when we are only interested in a simple expectation (this is the case with European derivatives, things are more complicated with early exercise features).
Variance Reduction Methods

The efficiency of a simulation refers to the computational cost of achieving a given level of confidence in the quantity we are trying to estimate;

Both the uncertainty in the estimation of the expectation as well as the uncertainty in the error of our estimation depend on the variance of the population from which we sample;

However whatever we do to reduce the variance of the population will most likely tend to increase the computational time per MC cycle;

As a result in order to make a fair comparison between different estimators we must take into account not only their variance but also the computational work for each MC cycle.
Suppose we want to compute a parameter P, for example the price of a derivative security, and that we have a choice between two types of Monte Carlo estimates which we denote by

$$\hat{P}_1 i = 1, \ldots, n \quad \hat{P}_2 i = 1, \ldots, n$$

Suppose that both are unbiased, so that

$$\mathbb{E}[\hat{P}_1] = P_1 \quad \mathbb{E}[\hat{P}_2] = P_2$$

but

$$\sigma_1 < \sigma_2$$
Variance Reduction Methods

- A sample mean of n replications of P_1 gives a more precise estimate of P than does a sample mean of n replications of P_2;
- This oversimplifies the comparison because it fails to capture possible differences in the computational effort required by the two estimators;
- Generating n replications of P_1 may be more time-consuming than generating n replications of P_2;
- Smaller variance is not sufficient grounds for preferring one estimator over another!
To compare estimators with different computational requirements, we argue as follows;

Suppose the work required to generate one replication of P_j is a constant, $b_j (j = 1, 2)$;

With computing time t, the number of replications of P_j that can be generated is t/b_j;

The two estimators available with computing time t are therefore:

$$\frac{b_1}{t} \sum_{i=1}^{t/b_1} \hat{P}_i^1 \quad \frac{b_2}{t} \sum_{i=1}^{t/b_2} \hat{P}_i^2$$
Variance Reduction Methods

- For large t these are approximately normally distributed with mean P and with standard deviations

$$
\sigma_1 \sqrt{\frac{b_1}{t}} \quad \sigma_2 \sqrt{\frac{b_2}{t}}
$$

- Thus for large t the first estimator should be preferred over the second if

$$
\sigma_1^2 b_1 < \sigma_2^2 b_2
$$

- The important quantity is the product of variance and work per run;
If we do nothing about efficiency, the number of MC replications we need to achieve acceptable pricing accuracy may be surprisingly large;

As a result in many cases variance reduction techniques are a practical requirement;

From a general point of view these methods are based on two principal strategies for reducing variance:

- Taking advantage of tractable features of a model to adjust or correct simulation output
- Reducing the variability in simulation input
Variance Reduction Methods

The most commonly used strategies for variance reduction are the following:

- **Antithetic variates**
- **Moment Matching**
- Control variates
- Importance sampling
- Stratification
- Low-discrepancy sequences
Variance Reduction Methods - Antithetic Variates

- In this case we construct the estimator by using two brownian trajectories that are mirror images of each other;
- This causes cancellation of dispersion;
- This method tends to reduce the variance modestly but it is extremely easy to implement and as a result very commonly used;
- For the antithetic method to work we need V^+ and V^- to be negatively correlated;
- this will happen if the payoff function is a monotonic function of Z;
Variance Reduction Methods - Antithetic Variates

To apply the antithetic variate technique, we generate standard normal random numbers Z and define two set of samples of the underlying price

$$S_T^+ = S_0 e^{(r\sigma^2/2)T + \sigma \sqrt{T}Z} \quad S_T^- = S_0 e^{(r\sigma^2/2)T + \sigma \sqrt{T}(-Z)}$$

Similarly we define two sets of discounted payoff samples ...

$$V_T^+ = \max[S^+(T) - K, 0] \quad V_T^- = \max[S^-(T) - K, 0]$$

... and at last we construct our mean estimator by averaging these samples

$$\bar{V}_0 = \frac{1}{n} \sum_{j=1}^{n} \frac{1}{2} \left(V_j^+ + V_j^- \right)$$
Variance Reduction Methods - Moment Matching

- Let $z_i, i = 1, ..., n$, denote an independent standard normal random vector used to drive a simulation.
- The sample moments will not exactly match those of the standard normal. The idea of moment matching is to transform the z_i to match a finite number of the moments of the underlying population.
- For example, the first and second moment of the normal random number can be matched by defining

$$
\tilde{z}_i = (z_i - \tilde{z}) \frac{\sigma_z}{s_z} + \mu_z, \quad i = 1, ..., n
$$

where \tilde{z} is the sample mean of the z_i and σ_z is the population standard deviation, s_z is the sample standard deviation of z_i, and μ_z is the population mean.
Outline

1 Introduction
 - Some Basic Ideas
 - Theoretical Foundations of Monte Carlo Simulations

2 Single Asset Path Generation
 - Definitions
 - Exact Solution Advancement
 - Numerical Integration of SDE
 - The Brownian Bridge

3 Variance Reduction Methods
 - Antithetic Variables
 - Moment Matching

4 Multi Asset Path Generation
 - Choleski Decomposition

5 Copula Functions

6 Valuation of European Option with Stochastic Volatility
 - Square-Root Diffusion: the CIR Model
 - The Heston Model

7 Valuation of American Option

8 The Hull and White Model

9 MCS for CVA Estimation
 - Definitions
 - CVA of a Plain Vanilla Swap: the Analytical Model
 - CVA of a Plain Vanilla Swap: the Simulation Approach
Choleski Decomposition

- The **Choleski Decomposition** makes an appearance in Monte Carlo Methods where it is used to simulating systems with correlated variables.

- Cholesky decomposition is applied to the correlation matrix, providing a lower triangular matrix A, which when applied to a vector of uncorrelated samples, u, produces the covariance vector of the system. Thus it is highly relevant for quantitative trading.

- The standard procedure for generating a set of correlated normal random variables is through a linear combination of uncorrelated normal random variables;

- Assume we have a set of n independent standard normal random variables Z and we want to build a set of n correlated standard normals Z' with correlation matrix Σ

\[
Z' = AZ, \quad AA^t = \Sigma
\]
We can find a solution for A in the form of a triangular matrix

$$
egin{pmatrix}
A_{11} & 0 & \cdots & 0 \\
A_{21} & A_{22} & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
A_{n1} & A_{n2} & \cdots & A_{nn}
\end{pmatrix}
$$

- diagonal elements

$$
a_{ii} = \sqrt{\Sigma_{ii} - \sum_{k=1}^{i-1} a_{ik}^2}
$$

- off-diagonal elements

$$
a_{ij} = \frac{1}{a_{ii}} \left(\Sigma_{ij} - \sum_{k=1}^{i-1} a_{ik}a_{jk} \right)
$$
Choleski Decomposition

For example, for a two-dimension random vector we have simply

\[A = \begin{pmatrix} \sigma_1 & 0 \\ \sigma_2 \rho & \sigma_2 \sqrt{1 - \rho^2} \end{pmatrix} \]

say one needs to generate two correlated normal variables \(x_1 \) and \(x_2 \)

All one needs to do is to generate two uncorrelated Gaussian random variables \(z_1 \) and \(z_2 \) and set

\[x_1 = z_1 \]

\[x_2 = \rho z_1 + \sqrt{1 - \rho^2} z_2 \]
Copula Functions

- **Why Copula?**
 - A copula is a function that links univariate marginals to their multivariate distribution;
 - Non-linear dependence
 - Be able to measure dependence for heavy tail distributions
 - Very flexible: parametric, semi-parametric or non-parametric
 - Be able to study asymptotic properties of dependence structures
 - Many others... (ask to Cherubini for everything you would like to know about copula)
In most applications, the distribution is assumed to be a multivariate gaussian or a log-normal distribution for tractable calculus, even if the gaussian assumption may not be appropriate.

Copulas are a powerful tool for finance, because the modelling problem can be splitted into two steps:
- the first step deals with the identification of the marginal distributions;
- and the second step consists in defining the appropriate copula in order to represent the dependence structure in a good manner.
Copula Functions

Bivariate gaussian copula

Normal copula, normal marginals

Normal copula, Weibull & split-normal marginals
Copula Functions

Clayton copula

$\tau = 0.80$

Clayton copula, normal marginals

Clayton copula, Weibull & split normal marginals
GitHub: polyhedron-gdl;

Notebook: mcs_multi_asset_path;
Outline

1. Introduction
 - Some Basic Ideas
 - Theoretical Foundations of Monte Carlo Simulations

2. Single Asset Path Generation
 - Definitions
 - Exact Solution Advancement
 - Numerical Integration of SDE
 - The Brownian Bridge

3. Variance Reduction Methods
 - Antithetic Variables
 - Moment Matching

4. Multi Asset Path Generation
 - Choleski Decomposition

5. Valuation of European Option with Stochastic Volatility
 - Square-Root Diffusion: the CIR Model
 - The Heston Model

6. Valuation of American Option

7. The Hull and White Model

8. MCS for CVA Estimation
 - Definitions
 - CVA of a Plain Vanilla Swap: the Analytical Model
 - CVA of a Plain Vanilla Swap: the Simulation Approach
CIR Model

- In this section, we consider the stochastic short rate model MCIR85 of Cox- Ingersoll-Ross which is given by the SDE:

\[
d r_t = \kappa_r (\theta - r_t) dt + \sigma_r \sqrt{r_t} dZ_t
\]

(8)

- To simulate the short rate model, it has to be discretized. To this end, we divide the given time interval \([0, T]\) in equidistant sub-intervals of length \(t\) such that now \(t \in \{0, \Delta t, 2\Delta t, \ldots, T\}\), i.e. there are \(M + 1\) points in time with \(M = T/t\).

- The exact transition law of the square-root diffusion is known. Consider the general square-root diffusion process

\[
dx_t = \kappa (\theta - x_t) dt + \sigma \sqrt{x_t} dZ_t
\]

(9)
It can be show that x_t, given x_s with $s = t - \Delta t$, is distributed according to

$$x_t = \frac{\sigma^2 (1 - e^{-\kappa \Delta t})}{4\kappa} \chi_d' \left(\frac{4^{-\kappa \Delta t}}{\sigma^2 (1 - e^{-\kappa \Delta t}) x_s} \right)$$

where χ_d' denotes a non-central chi-squared random variable with

$$d = \frac{4\theta \kappa}{\sigma^2}$$

degrees of freedom and non-centrality parameter

$$l = \frac{4^{-\kappa \Delta t}}{\sigma^2 (1 - e^{-\kappa \Delta t}) x_s}$$
CIR Model

- For implementation purposes, it may be convenient to sample a chi-squared random variable χ^2_d instead of a non-central chi-squared one, χ'^2_d.
- If $d > 1$, the following relationship holds true

$$\chi'^2_d(l) = (z + \sqrt{l})^2 + \chi^2_{d-1}$$

where z is an independent standard normally distributed random variable.
- Similarly, if $d \leq 1$, one has

$$\chi'^2_d(l) = \chi^2_{d+2N}$$

where N is now a Poisson-distributed random variable with intensity $l/2$. For an algorithmic representation of this simulation scheme refer to Glasserman, p. 124.
CIR Model: Pricing ZCB

- A MC estimator for the value of the ZCB at t is derived as follows.
- Consider a certain path i of the l simulated paths for the short rate process with time grid $t \in \{0, \Delta t, 2\Delta t, \ldots, T\}$.
- We discount the terminal value of the ZCB, i.e. 1, step-by-step backward. For $t < T$ and $s = t - \Delta t$ we have
 \[B_{s,i} = B_{t,i} e^{-\frac{r_t + r_s}{2} \Delta t} \]
- The MC estimator of the ZCB value at t is
 \[B_{t}^{MC} = \frac{1}{l} \sum_{i=1}^{l} B_{t,i} \]
The present value of the ZCB in the CIR model takes the form:

\[B_0(T) = b_1(T)e^{-b_2(T)r_0} \]

where

\[b_1(T) = \left[\frac{2\gamma \exp((\kappa r + \gamma)T/2)}{2\gamma + (\kappa r + \gamma)(e^{\gamma T} - 1)} \right]^\frac{2\kappa r \theta r}{\sigma_r^2} \]

\[b_2(T) = \frac{2(e^{\gamma T} - 1)}{2\gamma + (\kappa r + \gamma)(e^{\gamma T} - 1)} \]

\[\gamma = \sqrt{\kappa_r^2 + 2\sigma_r^2} \]
Valuation of European Option with Stochastic Volatility
Square-Root Diffusion: the CIR Model

Notebook

GitHub: polyhedron-gdl;
Notebook: n06_mcs_cir;
The Heston Model

- Stochastic volatility models are those in which the variance of a stochastic process is itself randomly distributed.
- The models assume that the underlying security’s volatility is a random process, governed by state variables such as the price level of the underlying security, the tendency of volatility to revert to some long-run mean value, and the variance of the volatility process itself, among others.
- Stochastic volatility models are one approach to resolve a shortcoming of the Black–Scholes model.
- In particular, this model cannot explain long-observed features of the implied volatility surface such as volatility smile and skew, which indicate that implied volatility does tend to vary with respect to strike price and expiry.
- By assuming that the volatility of the underlying price is a stochastic process rather than a constant, it becomes possible to model derivatives more accurately.
By assuming that the volatility of the underlying price is a stochastic process rather than a constant, it becomes possible to model derivatives more accurately.

- Heston model
- CEV model
- SABR volatility model
- GARCH model
In this section we are going to consider the stochastic volatility model MH93 with constant short rate.

This section values European call and put options in this model by MCS.

As for the ZCB values, we also have available a semi-analytical pricing formula which generates natural benchmark values against which to compare the MCS estimates.
The basic Heston model assumes that S_t, the price of the asset, is determined by a stochastic process:

$$dS_t = \mu S_t \, dt + \sqrt{\nu_t} S_t \, dW_t^S$$

where ν_t, the instantaneous variance, is a CIR process:

$$d\nu_t = \kappa (\theta - \nu_t) \, dt + \xi \sqrt{\nu_t} \, dW_t^\nu$$

and dW_t^S, dW_t^ν are Wiener process with correlation ρ, or equivalently, with covariance ρdt.
The Heston Model

The parameters in the above equations represent the following:

- μ is the rate of return of the asset.
- θ is the *long variance*, or long run average price variance; as t tends to infinity, the expected value of ν_t tends to θ.
- κ is the rate at which ν_t reverts to θ.
- ξ is the volatility of the volatility, or *vol of vol*, and determines the variance of ν_t.

If the parameters obey the following condition (known as the Feller condition) then the process ν_t is strictly positive

$$2\kappa \theta > \xi^2$$
The Heston Model

- The correlation introduces a new problem dimension into the discretization for simulation purposes.
- To avoid problems arising from correlating normally distributed increments (of \(S \)) with chi-squared distributed increments (of \(\nu \)), we will in the following only consider Euler schemes for both the \(S \) and \(\nu \) process.
- This has the advantage that the increments of \(\nu \) become normally distributed as well and can therefore be easily correlated with the increments of \(S \).
The Heston Model

- we consider two discretization schemes for S and seven discretization schemes for ν.
- For S we have the simple Euler discretization scheme (with $s = t - \Delta t$)

$$S_t = S_s \left(e^{r\Delta t} + \sqrt{\nu_t} \sqrt{\Delta t} z_t^1 \right)$$

As an alternative we consider the exact log Euler scheme

$$S_t = S_s e^{(r - \nu_t/2)\Delta t + \sqrt{\nu_t} \sqrt{\Delta t} z_t^1}$$

This one is obtained by considering the dynamics of log S_t and applying Ito’s lemma to it.
The Heston Model

- These schemes can be combined with any of the following Euler schemes for the square-root diffusion ($x^+ = \max[0, x]$):

- Full Truncation

$$\tilde{x}_t = \tilde{x}_s + \kappa (\theta - \tilde{x}_s^+) \Delta t + \sigma \sqrt{\tilde{x}_s^+} \sqrt{\Delta t} z_t, \quad x_t = \tilde{x}_t^+$$

- Partial Truncation

$$\tilde{x}_t = \tilde{x}_s + \kappa (\theta - \tilde{x}_s) \Delta t + \sigma \sqrt{\tilde{x}_s^+} \sqrt{\Delta t} z_t, \quad x_t = \tilde{x}_t^+$$

- Truncation

$$x_t = \max \left[0, \tilde{x}_s + \kappa (\theta - \tilde{x}_s) \Delta t + \sigma \sqrt{\tilde{x}_s} \sqrt{\Delta t} z_t \right]$$

- Reflection

$$\tilde{x}_t = |\tilde{x}_s| + \kappa (\theta - |\tilde{x}_s|) \Delta t + \sigma \sqrt{|\tilde{x}_s|} \sqrt{\Delta t} z_t, \quad x_t = |\tilde{x}_t|$$
The Heston Model

- **Hingham-Mao**

\[\tilde{x}_t = \tilde{x}_s + \kappa(\theta - \tilde{x}_s)\Delta t + \sigma \sqrt{|\tilde{x}_s|} \sqrt{\Delta t} z_t, \quad x_t = |\tilde{x}_t| \]

- **Simple Reflection**

\[\tilde{x}_t = \left| \tilde{x}_s + \kappa(\theta - \tilde{x}_s)\Delta t + \sigma \sqrt{\tilde{x}_s} \sqrt{\Delta t} z_t \right| \]

- **Absorption**

\[\tilde{x}_t = \tilde{x}_s^+ + \kappa(\theta - \tilde{x}_s^+)\Delta t + \sigma \sqrt{\tilde{x}_s^+} \sqrt{\Delta t} z_t, \quad x_t = \tilde{x}_t^+ \]

In the literature there are a lot of tests and numerical studies available that compare efficiency and precision of different discretization schemes.
Valuation of European Option with Stochastic Volatility

The Heston Model

Notebook

GitHub : polyhedron-gdl;

Notebook : n07_mcs_heston;
Outline

1. Introduction
 - Some Basic Ideas
 - Theoretical Foundations of Monte Carlo Simulations
2. Single Asset Path Generation
 - Definitions
 - Exact Solution Advancement
 - Numerical Integration of SDE
 - The Brownian Bridge
3. Variance Reduction Methods
 - Antithetic Variables
 - Moment Matching
4. Multi Asset Path Generation
 - Choleski Decomposition
5. Valuation of European Option with Stochastic Volatility
 - Square-Root Diffusion: the CIR Model
 - The Heston Model
6. Valuation of American Option
7. The Hull and White Model
8. MCS for CVA Estimation
 - Definitions
 - CVA of a Plain Vanilla Swap: the Analytical Model
 - CVA of a Plain Vanilla Swap: the Simulation Approach
As we have seen Monte Carlo simulation is a flexible and powerful numerical method to value financial derivatives of any kind.

However being a forward evolving technique, it is per se not suited to address the valuation of American or Bermudan options which are valued in general by backwards induction.

Longstaff and Schwartz provide a numerically efficient method to resolve this problem by what they call Least-Squares Monte Carlo.

The problem with Monte Carlo is that the decision to exercise an American option or not is dependent on the continuation value.
Valuation of American Option by Simulation

- Consider a simulation with $M + 1$ points in time and I paths.
- Given a simulated index level $S_{t,i}$, $t \in \{0, ..., T\}$, $i \in \{1, ..., I\}$, what is the continuation value $C_{t,i}(S_{t,i})$, i.e. the expected payoff of not exercising the option?
- The approach of Longstaff-Schwartz approximates continuation values for American options in the backwards steps by an ordinary least-squares regression.
- Equipped with such approximations, the option is exercised if the approximate continuation value is lower than the value of immediate exercise. Otherwise it is not exercised.
In order to explain the methodology, let’s start from a simpler problem (Gabbriellini, see credits section).

Consider a bermudan option which is similar to an american option, except that it can be early exercised once only on a specific set of dates.

In the next figure, we can represent the schedule of a put bermudan option with strike K and maturity in 6 years. Each year you can choose whether to exercise or not ...
Valuation of American Option by Simulation
Let’s consider a simpler example: a put option which can be exercised early only once ...
Valuation of American Option by Simulation
Valuation of American Option by Simulation

- Can we price this product by means of a Monte Carlo? Yes we can! Let’s see how.
- Let’s implement a MC which actually simulates, besides the evolution of the market, what an investor holding this option would do (clearly an investor who lives in the risk neutral world). In the following example we will assume the following data, \(S(T) =, K =, r =, \sigma =, t_1 = 1y, T = 2y \).
- We simulate that 1y has passed, computing the new value of the asset and the new value of the money market account

\[
S(t_1 = 1y) = S(t_0)e^{(r - \frac{1}{2}\sigma^2)(t_1 - t_0) + \sigma\sqrt{t_1 - t_0}N(0,1)}
\]

\[
B(t_1 = 1y) = B(t_0)e^{r(t_1 - t_0)}
\]
Valuation of American Option by Simulation

- At this point the investor could exercise. How does he know if it is convenient?
- In case of exercise he knows exactly the payoff he’s getting.
- In case he continues, he knows that it is the same of having a European Put Option.
- So, in mathematical terms we have the following payoff in t_1

$$\max[K - S(t_1), P(t_1, T; S(t_1), K)]$$

where $P(t_1, T; S(t_1), K)$ is the price of a Put which we compute analytically! In the jargon of american products, P is called the continuation value, i.e. the value of holding the option instead of early exercising it.
So the premium of the option is the average of this discounted payoff calculated in each iteration of the Monte Carlo procedure.

\[
\frac{1}{N} \sum_{i} \max \left[K - S_i(t_1), P(t_1, T; S_i(t_1), K) \right]
\]

Some considerations are in order.

We could have priced this product because we have an analytical pricing formula for the put. What if we didn’t have it?
Valuation of American Option by Simulation

- Brute force solution: for each realization of $S(t_1)$ we run another Monte Carlo to price the put.
- This method (called Nested Monte Carlo) is very time consuming. For this very simple case it’s time of execution grows as N^2, which becomes prohibitive when you deal with more than one exercise date!
- Let’s search for a finer solution analyzing the relationship between the continuation value (in this very simple example) and the simulated realization of S at step t_1.
- let’s plot the discounted payoff at maturity, P_i, versus $S_i(t_1)$...
Valuation of American Option by Simulation
Valuation of American Option by Simulation
As you can see, the analytical price of the put is a curve which kinds of interpolate the cloud of Monte Carlo points.

This suggest us that the price at time t_1 can be computed by means of an average on all discounted payoff (i.e. the barycentre of the cloud made of discounted payoff)

So maybe... the future value of an option can be seen as the problem of finding the curve that best fits the cloud of discounted payoff (up to date of interest)!!!

In the next slide, for example, there is a curve found by means of a linear regression on a polynomial of 5th order...
Valuation of American Option by Simulation
Valuation of American Option by Simulation
Valuation of American Option by Simulation

- We now have an empirical pricing formula for the put to be used in my MCS

\[P(t_1, T, S(t_1), K) = c_0 + c_1 S(t_1) + c_2 S(t_1)^2 + c_3 S(t_1)^3 + c_4 S(t_1)^4 + c_5 S(t_1)^5 \]

- The formula is obviously fast, the cost of the algorithm being the best fit.
- Please note that we could have used any form for the curve (not only a polynomial).
- This method has the advantage that it can be solved as a linear regression, which is fast.
The major insight of Longstaff-Schwartz is to estimate the continuation value $C_{t,i}$ by ordinary least-squares regression, therefore the name ”Least Square Monte Carlo” for their algorithm;

They propose to regress the I continuation values $Y_{t,i}$ against the I simulated index levels $S_{t,i}$.

Given D basis functions b with $b_1, \ldots, b_D : \mathbb{R}^D \to \mathbb{R}$ for the regression, the continuation value $C_{t,i}$ is according to their approach approximated by:
The Longstaff-Schwartz Algorithm

- Given D basis functions b with $b_1, \ldots, b_D : \mathbb{R}^D \rightarrow \mathbb{R}$ for the regression, the continuation value $C_{t,i}$ is according to their approach approximated by:

$$\hat{C}_{t,i} = \sum_{d=1}^{D} \alpha_{d,t}^* b_d(S_{t,i})$$ (1)

- The optimal regression parameters $\alpha_{d,t}^*$ are the result of the minimization

$$\min_{\alpha_{1,t}, \ldots, \alpha_{D,t}} \frac{1}{I} \sum_{i=1}^{I} \left(Y_{t,i} - \sum_{d=1}^{D} \alpha_{d,t} b_d(S_{t,i}) \right)^2$$
The Longstaff-Schwartz Algorithm

- Simulate I index level paths with $M + 1$ points in time leading to index level values $S_{t,i}$, $t \in \{0, \ldots, T\}$, $i \in \{1, \ldots, I\}$;
- For $t = T$ the option value is $V_{T,i} = h_T(S_{T,i})$ by arbitrage;
- Start iterating backwards $t = T - \Delta t, \ldots, \Delta t$:
 - regress the $T_{t,i}$ against the $S_{t,i}$, $i \in \{1, \ldots, I\}$, given D basis function b
 - approximate $C_{t,i}$ by $\hat{C}_{t,i}$ according to (1) given the optimal parameters $\alpha_{d,t}^*$ from (2)
 - set
 \[
 V_{t,i} = \begin{cases}
 h_t(S_{t,i}) & \text{if } h_t(S_{t,i}) > \hat{C}_{t,i} \text{ exercise takes place} \\
 Y_{t,i} & \text{if } h_t(S_{t,i}) \leq \hat{C}_{t,i} \text{ no exercise takes place}
 \end{cases}
 \]
- repeat iteration steps until $t = \Delta t$;
- for $t = 0$ calculate the LSM estimator
 \[
 \hat{V}_0^{LSM} = e^{-r\Delta t} \frac{1}{I} \sum_{i=1}^{I} V_{\Delta t,i}
 \]
Valuation of American Option

Notebook

GitHub: polyhedron-gdl;

Notebook: mcs_american;
Outline

1. Introduction
 - Some Basic Ideas
 - Theoretical Foundations of Monte Carlo Simulations

2. Single Asset Path Generation
 - Definitions
 - Exact Solution Advancement
 - Numerical Integration of SDE
 - The Brownian Bridge

3. Variance Reduction Methods
 - Antithetic Variables
 - Moment Matching

4. Multi Asset Path Generation
 - Choleski Decomposition

5. Valuation of European Option with Stochastic Volatility
 - Square-Root Diffusion: the CIR Model
 - The Heston Model

6. Valuation of American Option

7. The Hull and White Model

8. MCS for CVA Estimation
 - Definitions
 - CVA of a Plain Vanilla Swap: the Analytical Model
 - CVA of a Plain Vanilla Swap: the Simulation Approach
Hull-White Model

- Described by the SDE for the short rate

\[dr = (\theta(t) - ar)dt + \sigma dw \]

(10)

- See Brigo-Mercurio ...
- Our version simplified: \(a \) and \(\sigma \) constant;
- AKA Extended Vasicek (Note: \(r(t) \) is Gaussian);
- \(\theta \) determined uniquely by term structure;
Hull-White Model: Solving for $r(t)$

\[d(e^{at} r) = e^{at} dr + ae^{at} rdt = \theta(t)e^{at} + e^{at}\sigma dw \]

Integrating both sides we obtain

\[e^{at} r(t) = r(0) + \int_0^t \theta(s)e^{as} ds + \sigma \int_0^t e^{as} dw(s) \]

Simplify

\[r(t) = r(0)e^{-at} + \int_0^t \theta(s)e^{-a(t-s)} ds + \sigma \int_0^t e^{-a(t-s)} dw(s) \]
Hull-White Model: Solving for \(P(t, T) \)

- \(P(t, T) = V(t, r(t)) \) where \(V \) solves the PDE

\[
V_t + (\theta(t) - ar)V_r + \frac{1}{2}\sigma^2 V_{rr} - rV = 0
\]

- Final-time condition \(V(T, r) = 1 \) for all \(r \) at \(t = T \);
- Ansatz:

\[
V = A(t, T)e^{-B(t, T)r(t)}
\]

- \(A \) and \(B \) must satisfy:

\[
A_t - \theta(t)AB + \frac{1}{2}\sigma^2 (AB)^2 = 0, \quad \text{and} \quad B_t - aB + 1 = 0
\]

- Final-time conditions

\[
A(T, T) = 1 \quad \text{and} \quad B(T, T) = 0
\]
Hull-White Model: Solving for $P(t, T)$

- B independent of θ so

\[
B(t, T) = \frac{1}{a} \left(1 - e^{-a(T-t)} \right) \tag{11}
\]

- Solving for A requires integration of θ

\[
A(t, T) = \exp \left[- \int_{t}^{T} \theta(s)B(s, T)ds - \frac{\sigma^2}{2a^2} (B(t, T) - T + t) - \frac{\sigma^2}{4a} B(t, T)^2 \right]
\]
Hull-White Model: Determining θ

- Determining θ from the term structure at time 0;
- Goal: demonstrate the relation

$$\theta(t) = \frac{\partial f}{f \partial T}(0, t) + af(0, t) + \frac{\sigma^2}{2a} \left(1 - e^{-2at}\right)$$ \hspace{1cm} (12)

- Recall

$$f(t, T) = -\partial \log P(t, T)/\partial T$$
Hull-White Model: Determining θ

- We have

\[- \log P(0, T) = \int_0^T \theta(s)B(s, T)ds + \frac{\sigma^2}{2a^2}[B(0, T) - T] + \frac{\sigma^2}{4a}B(0, T)^2 + B(0, T)r_0\]

- Differentiating and using that $B(T, T) = 1$ and $\partial_T B - 1 = -aB$ we get

\[f(0, T) = \int_0^T \theta(s)\partial_T B(s, T)ds - \frac{\sigma^2}{2a^2}B(0, T) + \frac{\sigma^2}{2a^2}B(0, T)\partial_T B(0, T) + \partial_T B(0, T)r_0\]
Hull-White Model: Determining θ

- Differentiating again, get:

$$
\partial_T f(0, T) = \theta(T) + \int_0^T \theta(s) \partial_{TT} B(s, T) \, ds \\
- \frac{\sigma^2}{2a^2} \partial_T B(0, T) \\
+ \frac{\sigma^2}{2a^2} [\left(\partial_T B(0, T) \right)^2 + B(0, T) \partial_{TT} B(0, T)] \\
+ \partial_{TT} B(0, T) r_0
$$

(13)
Hull-White Model: Determining θ

- Combine these equations, and use $a\partial_T B + \partial_{TT} B = 0$;
- Get:

$$af(0, T) + \partial_T f(0, T) = \theta(T) - \frac{\sigma^2}{2a} (aB + \partial_T B) + \frac{\sigma^2}{2a} [aB \partial_T B + (\partial_T B)^2 + B \partial_{TT} B]$$

- Substitute formula for B and simplify to get

$$af(0, T) + \partial_T f(0, T) = \theta(T) - \frac{\sigma^2}{2a} (1 - e^{-2aT})$$

QED
Additive Factor Gaussian Model

- The model is given by dynamics (Brigo-Mercurio p. 143):

\[r(t) = x(t) + \phi(t) \]

where

\[dx(t) = -ax(t)dt + \sigma dW_t \quad x(0) = 0 \]

and \(\phi \) is a deterministic shift which is added in order to fit exactly the initial zero coupon curve.
So the short rate $r(t)$ is distributed normally with mean and variance given by (Brigo-Mercurio p.144 equations 4.6 with $\eta = 0$)

$$E(r_t|r_s) = x(s)e^{-a(t-s)} + \phi(t)$$

$$Var(r_t|r_s) = \frac{\sigma^2}{2a} \left(1 - e^{-2a(t-s)}\right)$$

where $\phi(T) = f^M(0, T) + \frac{\sigma^2}{2a} \left(1 - e^{-aT}\right)^2$ and $f^M(0, T)$ is the market instantaneous forward rate at time t as seen at time 0.
Model discount factors are calculated as in Brigo-Mercurio (section 4.2):

\[
P(t, T) = \frac{P^M(0, T)}{P^M(0, t)} \exp(A(t, T))
\]

\[
A(t, T) = \frac{1}{2} [V(t, T) - V(0, T) + V(0, t)] - \frac{1 - e^{-a(T-t)}}{a} x(t)
\]

where

\[
V(t, T) = \frac{\sigma^2}{a^2} \left[T - t + \frac{2}{a} e^{-a(T-t)} - \frac{1}{2a} e^{-2a(T-t)} - \frac{3}{2a} \right]
\]
Outline

1. Introduction
 - Some Basic Ideas
 - Theoretical Foundations of Monte Carlo Simulations

2. Single Asset Path Generation
 - Definitions
 - Exact Solution Advancement
 - Numerical Integration of SDE
 - The Brownian Bridge

3. Variance Reduction Methods
 - Antithetic Variables
 - Moment Matching

4. Multi Asset Path Generation
 - Choleski Decomposition

5. Valuation of European Option with Stochastic Volatility
 - Square-Root Diffusion: the CIR Model
 - The Heston Model

6. Valuation of American Option

7. The Hull and White Model

8. MCS for CVA Estimation
 - Definitions
 - CVA of a Plain Vanilla Swap: the Analytical Model
 - CVA of a Plain Vanilla Swap: the Simulation Approach
CVA Context

- Counterparty risk can be considered broadly from two different points of view;
- The first point of view is risk management, leading to capital requirements revision, trading limits discussions and so on;
- The second point of view is valuation or pricing, leading to amounts called Credit Valuation Adjustment (CVA) and extensions thereof, including netting, collateral, re-hypothecation, close-out specification, wrong way risk and funding cost;
Exposure Profiles

- There are two main effects that determine the credit exposure over time for a single transaction or for a portfolio of transactions with the same counterparty: diffusion and amortization;
- as time passes, the "diffusion effect" tends to increase the exposure, since there is greater variability and, hence, greater potential for market price factors to move significantly away from current levels;
- the "amortization effect", in contrast, tends to decrease the exposure over time, because it reduces the remaining cash flows that are exposed to default;
Exposure Profiles

- For single cash flow products, such as FX Forwards, the potential exposure peaks at the maturity of the transaction, because it is driven purely by ”diffusion effect”;
- on the other hand, for products with multiple cash flows, such as interest-rate swaps, the potential exposure usually peaks at one-third to one-half of the way into the life of the transaction;
Credit Value Adjustment

- **Credit Value Adjustment (CVA)** is by definition the difference between the risk-free portfolio value and the true portfolio value that takes into account the possibility of a counterparty’s default;
- in other words CVA is the market value of counterparty credit risk;
Credit Value Adjustment

- Assuming independence between exposure and counterparty’s credit quality greatly simplifies the analysis.
- under this assumption we can write

\[CVA = (1 - R) \int_0^T EE^*(t) dPD(0, t) \]

(14)

where \(EE^*(t) \) is the risk-neutral discounted expected exposure (EE) given by

\[EE^*(t) = E^Q \left[\frac{B_0}{B_t} E(t) \right] \]

(15)
Credit Value Adjustment

- In general calculating discounted EE requires simulations;
- Exposure is simulated at a fixed set of simulation dates, therefore the integral in (14) has to be approximated by the sum:

\[CVA = (1 - R) \sum_{i=1}^{N} EE^*(t_k)PD(t_{k-1}, t_k) \]

(16)

- Since expectation in (15) is risk-neutral, scenario models for all price factors should be arbitrage free;
- This is achieved by appropriate calibration of drifts and volatilities specified in the price-factor evolution model;
The General Unilateral Counterparty Risk Pricing Formula

At valuation time \(t \), and provided the counterparty has not defaulted before \(t \), i.e. on \(\{ \tau > t \} \), the price of our payoff with maturity \(T \) under counterparty risk is

\[
E_t[\tilde{\Pi}(t, T)] = E_t[\Pi(t, T)] - E_t[LGD \mathbb{I}_{t \leq \tau \leq T} D(t, \tau)(NPV(\tau))^{+}]
\]

positive counterparty-risk adjustment

\[
= E_t[\Pi(t, T)] - U_{CVA}(t, T)
\]

(17)

with

\[
U_{CVA}(t, T) = E_t[LGD \mathbb{I}_{t \leq \tau \leq T} D(t, \tau)(NPV(\tau))^{+}]
\]

(18)

Where \(LGD = 1 - REC \) is the loss given default, and the recovery fraction \(REC \) is assumed to be deterministic.
It is clear that the value of a defaultable claim is the sum of the value of the corresponding default-free claim minus a positive adjustment.

The positive adjustment to be subtracted is called (Unilateral) Credit Valuation Adjustment (CVA), and it is given by a call option (with zero strike) on the residual NPV at default, giving nonzero contribution only in scenario where $\tau \leq T$.
Counterparty risk thus adds and optionality level to the original payoff. This renders the counterparty risk payoff model dependent even when the original payoff is model independent. This implies, for example, that while the valuation of swaps without counterparty risk is model independent, requiring no dynamical model for the term structure (no volatility and correlations in particular), the valuation of swaps under counterparty risk will require and interest rate model.
The General Unilateral Counterparty Risk Pricing Formula

- Now we explore the well known result that the component of the IRS price due to counterparty risk is the sum of swaption prices with different maturities, each weighted with the probability of defaulting around that maturity.

- Let us suppose that we are a default free counterparty "B" entering a payer swap with a defaultable counterparty "C", exchanging fixed for floating payments at times T_{a+1}, \ldots, T_b.

- Denote by β_i the year fraction between T_{i-1} and T_i, and by $P(t, T_i)$ the default-free zero coupon bond price at time t for maturity T_i. We take a unit notional on the swap.

- The contract requires us to pay a fixed rate K and to receive the floating rate L resetting one period earlier until the default time τ of "B" or until final maturity T if $\tau > T$.

- The fair forward-swap rate K at a given time t in a default-free market is the one which renders the swap zero-valued in t.
The General Unilateral Counterparty Risk Pricing Formula

- In the risk-free case the discounted payoff for a payer IRS is

\[\sum_{i=a+1}^{b} D(t, T_i) \beta_i (L(T_{i-1}, T_i) - K) \] (19)

- and the forward swap rate rendering the contract fair is

\[K = S(t; T_a, T_b) = S_{a,b}(t) = \frac{P(t, T_a) - P(t, T_b)}{\sum_{i=a+1}^{b} P(t, T_i) \beta_i} \]
The General Unilateral Counterparty Risk Pricing Formula

- Of course if we consider the possibility that ”C” may default, the correct spread to be paid in the fixed leg is lower as we are willing to be rewarded for bearing this default risk.

- In particular we have

\[
U_{CVA}(t, T_b) = LGD \mathbb{E}_t \left[\mathbb{I}_{\tau \leq T_b} D(t, \tau)(NPV(\tau))^+ \right]
\]

\[
= LGD \int_{T_a}^{T_b} PS(t; s, T_b, K, S(t; s, T_b), \sigma_s, T_b) \ ds \mathbb{Q}\{\tau \leq s\}
\]

being \(PS(t; s, T_b, K, S(t; s, T_b), \sigma_s, T_b)\) the price in \(t\) of a swaption with maturity \(s\), strike \(K\) underlying forward swap rate \(S(t; s, T_b)\), volatility \(\sigma_s, T_b\) and underlying swap with final maturity \(T_b\).
The proof is the following: given independence between τ and the interest rates, and given that the residual NPV is a forward start IRS starting at the default time, the option on the residual NPV is a sum of swaptions with maturities ranging the possible values of the default time, each weighted (thanks to the independence assumption) by the probabilities of defaulting around each time value.

- We can simplify formulas allow the default to happen only at points T_i of the fixed leg payment grid.

- In this way the expected loss part is simplified.
The General Unilateral Counterparty Risk Pricing Formula

Indeed in the case of postponed (default occur to the first T_i following τ) payoff we obtain:

$$U_{CVA}(t, T_b) = LGD \mathbb{E}_t[\mathbb{I}_{\tau \leq T_b} D(t, \tau)(Npv(\tau))^+]$$

$$= LGD \sum_{i=a+1}^{b-1} PS(t; s, T_b, K, S(t; s, T_b), \sigma_s, \tau_b) \left(\mathbb{Q}\{\tau \geq T_i\} - \mathbb{Q}\{\tau > T_i\} \right)$$

(21)
Notebook

- GitHub: polyhedron-gdl;
- Notebook: n09_cva_swap;
CVA of a Plain Vanilla Swap: the Simulation Approach

1. Simulate yield curve at future dates
2. Calculate your derivatives portfolio NPV (net present value) at each time point for each scenario
3. Calculate CVA as sum of Expected Exposure multiplied by probability of default at this interval

\[CVA = (1 - R) \int DF(t)EE(t)dQ_t \]

where \(R \) is the Recovery Rate (normally set to 40%) \(EE(t) \) is the expected exposure at time \(t \) and \(dQ_t \) the survival probability density, \(DF(t) \) is the discount factor at time \(t \).
In this simple example we will use a modified version of Hull White model to generate future yield curves. In practice many banks use some yield curve evolution models based on this model.

For each point of time we will generate whole yield curve based on short rate. Then we will price our interest rate swap on each of these curves.

To approximate CVA we will use BASEL III formula for regulatory capital charge approximating default probability [or survival probability] as \(\exp(-S_T/(1-R)) \) so we get

\[
CVA = (1 - R) \sum_i \frac{EE(T_i)^* + EE(T_i^*)}{2} \left(e^{-S(T_{i-1})/(1-R)} - e^{-S(T_i)/(1-R)} \right)
\]

where \(EE^* \) is the discounted Expected Exposure of portfolio.
CVA of a Plain Vanilla Swap: the Simulation Approach

cva profile for a plain vanilla swap

- green: simulated
- red: analytic
Notebook

- GitHub: polyhedron-gdl;
- Notebook: n10_mcs_cva_swap;
Credits

- Damiano Brigo, Fabio Mercurio ”Interest Rate Models — Theory and Practice” Springer Finance (2006)
- Damiano Brigo, Massimo Morini, Andrea Pallavicini ”Counterparty Credit Risk, Collateral and Funding” Wiley Finance (2013)
- Tommaso Gabbriellini ”American Options with Monte Carlo” Presentation on Slideshare
- Don L. McLeish ”Monte Carlo Simulation and Finance” Wiley Finance (2005)