Introduction to the Course

Distributed Systems L-A
Sistemi Distribuiti L-A

Andrea Omicini
andrea.omicini@unibo.it

Ingegneria Due
Alma Mater Studiorum—Università di Bologna a Cesena

Academic Year 2009/2010
1 Motivations
 • Toward Distributed Computational Systems

2 The Course
 • Goal & Structure
 • What to Do
Outline

1 Motivations
 • Toward Distributed Computational Systems

2 The Course
 • Goal & Structure
 • What to Do
What is a computational system?

- any system with computational capabilities
- how many computational systems today in this room?
 - how many a few years ago?

Interactivity & Interoperability

- Almost any computational system of today comes equipped with ICT technologies for interacting with other computational systems
- We live immersed in a sort of *computational cloud*, where an incredible (and always increasing) number of computations are performed at every instant
 - distributed, concurrent computations
 - either controlled / triggered, or autonomous computations
Computational Systems

What is a computational system?
- any system with computational capabilities
- how many computational systems today in this room?
 - how many a few years ago?

Interactivity & Interoperability
- Almost any computational system of today comes equipped with ICT technologies for interacting with other computational systems
- We live immersed in a sort of computational cloud, where an incredible (and always increasing) number of computations are performed at every instant
 - distributed, concurrent computations
 - either controlled / triggered, or autonomous computations
Motivations

Toward Distributed Computational Systems

Pervasiveness of Computational Systems

Nowadays, computational systems...
- ... have become pervasive
- ... are at the core of most artificial systems

The physical nature of artificial systems...
- ... adds complexity to computational components / systems
 - in terms of physical distribution
 - in terms of temporal distribution
 - in terms of unpredictability of the scenarios
Pervasiveness of Computational Systems

Nowadays, computational systems...
- ...have become pervasive
- ...are at the core of most artificial systems

The physical nature of artificial systems...
- ...adds complexity to computational components / systems
 - in terms of physical *distribution*
 - in terms of temporal *distribution*
 - in terms of *unpredictability* of the scenarios
On the Notion of Distribution

What is distributed?
- computational units, communication channels...
- data, information, knowledge
 - as well as their representations
- sensors, actuators, ...
 - the boundaries between the systems and the surrounding environment are topologically sparse

Spatio-temporal unity of systems is lost
- there is no longer a notion of system time, nor a system location
- system components, at different level of abstraction, are only partially related
 - temporally & topologically
On the Notion of Distribution

What is distributed?
- computational units, communication channels...
- data, information, knowledge
 - as well as their representations
- sensors, actuators, ...
 - the boundaries between the systems and the surrounding environment are topologically sparse

Spatio-temporal unity of systems is lost
- there is no longer a notion of system time, nor a system location
- system components, at different level of abstraction, are only partially related
 - temporally & topologically
What has Changed?

A number of assumptions over systems no longer hold

- system events *no longer* constitute a totally-ordered set
 - generally speaking, partial ordering is the only feature
- admissible interactions among system components *no longer* depend on compresence
 - in space / time
 - within a physical / virtual topology
1 Motivations
 - Toward Distributed Computational Systems

2 The Course
 - Goal & Structure
 - What to Do
Goals of the Course

Students of this course should

- Learn the basics of distributed systems
- Take a look at some of the hottest new trends
- Experiment with coordination-based technologies
 - as a general-purpose approach to advanced technologies for distributed computational systems
- Possibly, experiment with web-based technologies
 - as a relevant case of today widespread distributed computational systems
Goals of the Course

- Learn the basics of distributed systems
- Take a look at some of the hottest new trends
- Experiment with coordination-based technologies
 - as a general-purpose approach to advanced technologies for distributed computational systems
- Possibly, experiment with web-based technologies
 - as a relevant case of today widespread distributed computational systems
Goals of the Course

Students of this course should

- Learn the basics of distributed systems
- Take a look at some of the hottest new trends
- Experiment with coordination-based technologies
 - as a general-purpose approach to advanced technologies for distributed computational systems
- Possibly, experiment with web-based technologies
 - as a relevant case of today widespread distributed computational systems
Goals of the Course

Students of this course should

- Learn the basics of distributed systems
- Take a look at some of the hottest new trends
- Experiment with coordination-based technologies
 - as a general-purpose approach to advanced technologies for distributed computational systems
- Possibly, experiment with web-based technologies
 - as a relevant case of today widespread distributed computational systems
Goals of the Course

Students of this course should

- Learn the basics of distributed systems
- Take a look at some of the hottest new trends
- Experiment with coordination-based technologies
 - as a general-purpose approach to advanced technologies for distributed computational systems
- Possibly, experiment with web-based technologies
 - as a relevant case of today widespread distributed computational systems
Goals of the Course

Students of this course should:

- Learn the basics of distributed systems
- Take a look at some of the hottest new trends
- Experiment with coordination-based technologies
 - as a general-purpose approach to advanced technologies for distributed computational systems
- Possibly, experiment with web-based technologies
 - as a relevant case of today widespread distributed computational systems
Goals of the Course

Students of this course should

- Learn the basics of distributed systems
- Take a look at some of the hottest new trends
- Experiment with coordination-based technologies
 - as a general-purpose approach to advanced technologies for distributed computational systems
- Possibly, experiment with web-based technologies
 - as a relevant case of today widespread distributed computational systems
Structure of the Course: Main Topics

Generality on distributed systems
- Basic problems and definitions
- Software architectures

Issues of distributed systems
- Communication
- Naming
- Synchronisation
- Consistency & replication
- Fault tolerance

Main sorts of distributed systems
- Distributed object-based systems
- Distributed web-based systems
- Distributed coordination-based systems
Structure of the Course: Main Topics

Generality on distributed systems
- Basic problems and definitions
- Software architectures

Issues of distributed systems
- Communication
- Naming
- Synchronisation
- Consistency & replication
- Fault tolerance

Main sorts of distributed systems
- Distributed object-based systems
- Distributed web-based systems
- Distributed coordination-based systems
Structure of the Course: Main Topics

Generality on distributed systems
- Basic problems and definitions
- Software architectures

Issues of distributed systems
- Communication
- Naming
- Synchronisation
- Consistency & replication
- Fault tolerance

Main sorts of distributed systems
- Distributed object-based systems
- Distributed web-based systems
- Distributed coordination-based systems
Material of the Course: Main Book

[Tanenbaum and van Steen, 2007a]

Distributed Systems. Principles and Paradigms

[Tanenbaum and van Steen, 2007b]

Sistemi Distribuiti
Pearson Education Italia, Torino, Italia, 2ª edizione.

This book represents the main guide throughout the first two parts of the course—Basics & Issues
Material of the Course: Main Book

[**Tanenbaum and van Steen, 2007a**]

Distributed Systems. Principles and Paradigms

[**Tanenbaum and van Steen, 2007b**]

Sistemi Distribuiti

Pearson Education Italia, Torino, Italia, 2ª edizione.

This book represents the main guide throughout the first two parts of the course—Basics & Issues
Material of the Course: Slides

http://apice.unibo.it/xwiki/bin/view/Courses/SdLa0910

- Slides will be available from the course’s web site
- Along with any additional information—e.g., related literature

The last part of the course – on the three main sorts of distributed systems – will contain several references to the Tanenbaum & van Steen book chapters, but will mainly evolve according to a different perspective, reported on the course’s slide.
Outline

1 Motivations
 - Toward Distributed Computational Systems

2 The Course
 - Goal & Structure
 - What to Do
Attitude toward the Course

Attending lessons is important

- The topic is rich of subtleties
- A lot of “implicit knowledge” is transferred orally

Material should suffice, anyway

- For those who have problems attending lessons
- Or, for those who just hate the Professor’s voice / face / slides / attitude / whatever
Attitude toward the Course

Attending lessons is important

- The topic is rich of subtleties
- A lot of “implicit knowledge” is transferred orally

Material should suffice, anyway

- For those who have problems attending lessons
- Or, for those who just hate the Professor’s voice / face / slides / attitude / whatever
Registering to the Course

Professors-students lists...
- are provided for free by the **Alma Mater Studiorum**
- they mostly work
- we will use them here

Please register soon...
- to the list ANDREA.OMICINI.SD-LA-0910
- using password 0910SDLA
- like, say, *today.*
Registering to the Course

Professors-students lists…
- are provided for free by the Alma Mater Studiorum
- they mostly work
- we will use them here

Please register soon…
- to the list ANDREA.OMICINI.SD-LA-0910
- using password 0910SDLA
- like, say, today.
Oral Examination

- Typically, three questions
 - possibly with some code to be read, understood, or written
- Projects are not excluded a priori
 - but should be carefully selected, motivated, and supported
 - in case, the discussion of the project replaces the three questions
 - however, if the project is not completed on time, the exam switches back to oral examination

Registering to AlmaEsami lists is required...

- ... in order to be examined
- ... for the first session after the course
- After that, just contact the Professor via mail...
- ... using your Alma Mater mail account
The Exam

Oral Examination

- Typically, three questions
 - possibly with some code to be read, understood, or written
- Projects are not excluded a priori
 - but should be carefully selected, motivated, and supported
 - in case, the discussion of the project replaces the three questions
 - however, if the project is not completed on time, the exam switches back to oral examination

Registering to AlmaEsami lists is required...

- ... in order to be examined
- ... for the first session after the course
- After that, just contact the Professor via mail...
- ... using your Alma Mater mail account
The Exam

Oral Examination

- Typically, three questions
 - possibly with some code to be read, understood, or written
- Projects are not excluded a priori
 - but should be carefully selected, motivated, and supported
 - in case, the discussion of the project replaces the three questions
 - however, if the project is not completed on time, the exam switches back to oral examination

Registering to AlmaEsami lists is required...

- ... in order to be examined
- ... for the first session after the course
- After that, just contact the Professor via mail...
- ... using your Alma Mater mail account
The Exam

Oral Examination

- Typically, three questions
 - possibly with some code to be read, understood, or written
- Projects are not excluded a priori
 - but should be carefully selected, motivated, and supported
 - in case, the discussion of the project replaces the three questions
 - however, if the project is not completed on time, the exam switches back to oral examination

Registering to AlmaEsami lists is required...

- ... in order to be examined
- ... for the first session after the course
- After that, just contact the Professor via mail...
- ... using your Alma Mater mail account
Bibliography

Introduction to the Course

Distributed Systems L-A
Sistemi Distribuiti L-A

Andrea Omicini
andrea.omicini@unibo.it

Ingegneria Due
ALMA MATER STUDIORUM—Università di Bologna a Cesena

Academic Year 2009/2010