[module 2.2]

VERIFICATION OF CONCURRENT PROGRAMS - BASICS
FORMAL METHODS

• Errors in concurrent programming and concurrent systems cannot be discovered by debugging and corrections cannot be checked by testing.
 > need of formal methods to specify and the verify rigorously the concurrent programs (systems).

• Two principal (class of) formal techniques:
 – model checking
 • where verification is done by generating one by one all the states of the systems and by checking the properties state by state
 • can be automated by model checkers tools
 – inductive proofs of invariants
 • invariant properties are proved by induction over the states of the system
 • can be automated by tools called deductive systems

• Both techniques rely on some kind of formal language / calculus to specify correctness properties.
CORRECTNESS PROPERTIES IN PROPOSITION CALCULUS

• With propositional calculus, correctness properties are expressed as logic formulae that must be true in order to verify the property in some state of the system
 – formulae are assertions obtained by composing propositions through logic connectors
 • and, or, not, implications, equivalence
• In our case propositions are about the values of the variables and of the control pointers during an execution of a concurrent programming
 – e.g. given the boolean variable want_p, an atomic proposition (assertion) want_p is true in a certain state if and only if the value of the variable want_p is true in that state
• Each label of a statement of a process will be used as an atomic proposition whose interpretation is "the control pointer of that process is currently at that label"
 – e.g. p1 proposition asserts that the control pointer of the process p is at the label p1.
AN EXAMPLE: MUTUAL EXCLUSION

<table>
<thead>
<tr>
<th>Third attempt</th>
</tr>
</thead>
<tbody>
<tr>
<td>boolean wantp ← false</td>
</tr>
<tr>
<td>boolean wantq ← false</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>p</th>
<th>q</th>
</tr>
</thead>
<tbody>
<tr>
<td>loop forever</td>
<td>loop forever</td>
</tr>
<tr>
<td>p1: non-critical section</td>
<td>q1: non-critical section</td>
</tr>
<tr>
<td>p2: wantp ← true</td>
<td>q2: wantq ← true</td>
</tr>
<tr>
<td>p3: await lwantq</td>
<td>q3: await lwantp</td>
</tr>
<tr>
<td>p4: critical section</td>
<td>q4: critical section</td>
</tr>
<tr>
<td>p5: wantp ← false</td>
<td>q5: wantq ← false</td>
</tr>
</tbody>
</table>

- Formula \(p_4 \land q_4 \)
 - is true if both control pointers of the processes are in the critical section
- if it exists some state in which this formula is true, then it means that the mutual exclusion property is **not** satisfied

> dually, a program satisfies the mutual exclusion property if the formula \(\neg(p_4 \land q_4) \) is true for every possible state of every scenario

SISCO LS - II Facoltà Ingegneria - Cesena Verification of Concurrent Programs - Basics
TEMPORAL LOGIC

• Processes and systems change their state over the time, and then also the interpretation of formulae about their state can change over the time.
 > we need a formal language/calculus that would take this aspect into the account
 > temporal logic is one of the most basic and popular one

• The temporal logic is a formal logic obtained by adding temporal operators to propositional or predicate logic
 – Linear Temporal Logic (LTL)
 • to express properties that must be true (at a state) for every possible scenario
 • linear / discrete model of time
 – Branching temporal logics
 • to express properties that must be true in some or all scenarios starting from a state
 • an example: CTL (computational tree logic)
LTL: TEMPORAL OPERATORS

- LTL is based on two basic temporal operators: always and eventually
 - **box** or **always** temporal operator: □A
 - the formula □A is true in a state s_i of a computation if and only if the formula A is true in all states s_j with j \geq i
 - synonym: □ p = G p (Globally p)
 - the always operator can be used then to specify **safety properties**, because it specifies what must be always be true
 - **diamond** or **eventually** temporal operator: ◇A
 - the formula ◇A is true in a state s_i of a computation if and only if the formula A is true in some states s_j with j \geq i
 - synonym: ◇ p = F p (Finally p)
 - the eventually operator is used to specify **liveness properties**, because it specifies something that eventually be true
BASIC PROPERTIES

- Reflexivity: \(\square A \rightarrow A \)
 \(A \rightarrow \Diamond A \)

- Duality: \(\neg \square A = \Diamond \neg A \)
 \(\neg \Diamond A = \square \neg A \)

- Sequences of operators: \(\Diamond \square A \)
 \(\square \Diamond A \)

\(S = T_1 T_N \) (2)
\(S = 1 - P + P_N \) (3)

- \(N \) is the number of processors
- \(T_1 \) is the execution time of the sequential algorithm
- \(T_N \) is the execution time of the parallel algorithm with \(N \) processors
- \(P \) is the proportion of a program that can be made parallel
- \((1 - P) \) is the proportion that cannot be parallelized (remains serial)

\(\langle p_i, q_j, \text{turn} \rangle p_i q_j \neg (p_4 \land q_4) \)
\(p_4 \land q_4 \) the formula
\(\Box A \) is true in a state
 if and only if the formula
 \(A \) is true in all states \(s_j \) with \(j > i \)
\(\Diamond A \) is true in a state
 if and only if the formula
 \(A \) is true in some states \(s_j \) with \(j > i \)
\(\square P \), where \(P = \neg Q \) and \(Q \) is the description of a bad state
\(\Diamond P \), where \(P \) is the description of a good case

\(p_2 \rightarrow \Diamond p_3 \)
\(\square (p_2 \rightarrow \Diamond p_3) \)

\(\text{try} p \rightarrow \neg cs q \)
\(W_{cs q} W_{cs p} \neg W_{cs q} W_{cs p} \)

\(\square A \rightarrow A \)
\(A \rightarrow \Diamond A \)
\(\neg \square A = \Diamond \neg A \)
\(\neg \Diamond A = \square \neg A \)

\(\Diamond \square A \)
\(\square \Diamond A \)
DEDUCTION WITH TEMPORAL LOGICS

• Temporal logic is a formal system of deductive logic with its own axioms and rules of inference
 – it can be used to formalize the semantics of concurrent programs and used to rigorously prove correctness properties of programs

• An example of a theorems in TL:

\[(\Diamond \Box A_1 \land \Diamond \Box A_2) \rightarrow \Diamond \Box (A_1 \land A_2)\] is true.

\[(\Box \Diamond A_1 \land \Box \Diamond A_2) \rightarrow \Box \Diamond (A_1 \land A_2)\] is false
SPECIFYING SAFETY PROPERTIES

- Box operator can be used to specify safety properties
 - as properties that must be always true
- \(\Box P \), where \(P = \neg Q \) and \(Q \) is the description of a bad state
 - an example: mutual exclusion in CS problem

<table>
<thead>
<tr>
<th>First attempt</th>
</tr>
</thead>
<tbody>
<tr>
<td>Integer turn (\leftarrow) 1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(p)</th>
<th>(q)</th>
</tr>
</thead>
<tbody>
<tr>
<td>loop forever</td>
<td>loop forever</td>
</tr>
<tr>
<td>p1: non-critical section</td>
<td>q1: non-critical section</td>
</tr>
<tr>
<td>p2: await turn = 1</td>
<td>q2: await turn = 2</td>
</tr>
<tr>
<td>p3: critical section</td>
<td>q3: critical section</td>
</tr>
<tr>
<td>p4: turn (\leftarrow) 2</td>
<td>q4: turn (\leftarrow) 1</td>
</tr>
</tbody>
</table>

- mutual exclusion property: \(\Box \neg (p_3 \land q_3) \)
SPECIFYING LIVENESS PROPERTIES

- Diamond operator can be used to specify liveness properties
 - as conditions that eventually will be true
- $\Diamond P$, where P is the description of a good case
 - an example: progress property (no starvation) in CS problem

<table>
<thead>
<tr>
<th>First attempt</th>
</tr>
</thead>
<tbody>
<tr>
<td>Integer turn $\leftarrow 1$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>p</th>
<th>q</th>
</tr>
</thead>
<tbody>
<tr>
<td>loop forever</td>
<td>loop forever</td>
</tr>
<tr>
<td>p1: non-critical section</td>
<td>q1: non-critical section</td>
</tr>
<tr>
<td>p2: await turn = 1</td>
<td>q2: await turn = 2</td>
</tr>
<tr>
<td>p3: critical section</td>
<td>q3: critical section</td>
</tr>
<tr>
<td>p4: turn $\leftarrow 2$</td>
<td>q4: turn $\leftarrow 1$</td>
</tr>
</tbody>
</table>

- progress property for one shot (no loops): $p_2 \rightarrow \Diamond p_3$
- progress property with loops: $\Box(p_2 \rightarrow \Diamond p_3)$
BINARY OPERATORS

• Always and eventually are unary operators. An example of useful and frequently used binary operator is until
 – **Until** operator: A U B
 • A U B is true in a state Si if and only if B is true in some state Sj, j>=i and A is true in all state Sk, i<=k<j.
 • That is: eventually B becomes true and that A is true until that happens
 – **Weak-Until** operator: A W B
 • like Until operator, but formula B is not required to become true eventually. If it does not, A must remain true indefinitely
 • A W B = as long as A is false, B must be true
OVERTAKING

• Consider the following scenario in the CS problem

\[
\text{try-p, try-q, CSq, try-q, CSq, ..., CSq, CSp}
\]

1000 times

• It’s not an example of starvation...
 – it is true that \(\Diamond CSp \)
 > but it’s evident too that freedom from starvation can be a very weak property!

• in some cases we want to ensure that a process would enter its critical section within a reasonable amount of time
K-BOUND OVERTAKING PROPERTY

• **k-bounded-overtaking property**
 – from the time a process p attempts to enter its critical section, another process can enter at most k times before p does
 – Example: 3-overtaking
 – $\text{try-}p, \text{try-}q, \text{CS}_q, \text{try-}q, \text{CS}_q, \text{try-}q, \text{CS}_q, \text{CS}_p$

• The property can be expressed by the weak until operator W
 – example with 1-bounded-overtaking:
 $$\text{try}_p \rightarrow \neg\text{CS}_q \ W \ \text{CS}_q \ W \ \neg\text{CS}_q \ W \ \text{CS}_p$$
VERIFICATION TECHNIQUES (1/2): MODEL-CHECKING

- Model checking is the most important and used technique for automatically checking correctness properties of concurrent systems
 - invaluable conceptual and practical tool for software engineers
- Strategy based on exhaustively searching the entire state space of a system and verify if certain properties are satisfied
 - properties as predicates on a system state or states, expressed as a logical specification such as propositional temporal logic formula
 - if the system satisfies the property, the model checker generates a confirmation response
 - otherwise, it produces a trace (counterexample) => useful also to identify bugs, not only to prove correctness
- SW vs. HW model checking
 - can be applied also to hardware
 - e.g. Intel adopting Model-Checking after the Pentium Bug in 1994
 - used in mission critical software systems
 - e.g. NASA after Mars Polar Lander incident in 1999
MODEL-CHECKING APPLICATIONS

- Program model checking
 - application of the model-checking techniques to software systems
 - in particular to the final implementation
 - discovering software defects
DEALING WITH THE STATE-SPACE EXPLOSIONITION PROBLEM

- The big problem of model-checking technique is the size of the state space
 - how to manage graph of millions of states? Is it feasible?
- State-of-the art techniques
 - applying rules to reduce the number of states
 - using variables that can be modeled by a limited number of values
 - incremental construction of the whole graph
 - exploring only reachable state of an execution.
 - checking the truth of a correctness specification as the incremental diagram is constructed, stopping the construction is a falsifying state is found
 - *symbolic* model checking
 - working with set of states
SPIN AND PROMELA

- **SPIN** is a widely used model-checker used in both academic research and industrial software development
 - extremely efficient
 - used in modeling and designing concurrent and distributed systems in general
- **PROMELA** is the language that is used in Spin to write concurrent programs modeling language
 - limited number of constructs intended to be used to build models of concurrent systems
AN EXAMPLE: DEKKER IN PROMELA

```plaintext
bool wantp = false, wantq = false;
byte turn = 1;

proctype p() {
    do ::
        wantp = true;
    do :: !wantq -> break;
    :: else ->
        if :: (turn == 1)
            :: (turn == 2) ->
                wantp = false;
                (turn = 1);
                wantp = true
        fi
    od;
    printf("LOG: p in CS\n");
    turn = 2;
    wantp = false
    od
}

proctype q() { /* similar */

    init {
        atomic {
            run p
            run q
        }
    }
```

SISCO LS - II Facoltà Ingegneria - Cesena Verification of Concurrent Programs - Basics 18
JAVA PATH FINDER (JPF)

• JPF is a recent model-checker specialized for the verification of programs written in Java
 – developed by NASA, used for critical software
 – open-source project
 • http://javapathfinder.sourceforge.net/

• JPF is a special JVM executing programs theoretically along all possible scenarios (execution paths), checking for property violations
 – deadlocks, uncaught exceptions, etc
 – If it finds an error, JPF reports the whole execution that leads to it
JPF MODEL OF OPERATION

Verification target (Java bytecode program)

Virtual Machine

Core JPF

Search Strategy

VM driver

property checker

search listener

system/apps

search observation

MJL

Library abstraction

Choice generator

VM observation

data/scheduling heuristics

state mgnt

verification report

Error path

Step #11 Thread #0
oldclassic.java:55
oldclassic.java:37
event1.wait_for_event();
wait();
...
Step #14 Thread #1
oldclassic.java:95
oldclassic.java:37
event2.wait_for_event();
wait();

Thread stacks

Thread: Thread-0
at java.lang.Object.wait(java/lang/Object.java:429)
at Event.wait_for_event(oldclassic.java:37)
...
Thread: Thread-1
at java.lang.Object.wait(java/lang/Object.java:429)
at Event.wait_for_event(oldclassic.java:37)
...

1 Error Found: Deadlock

VERIFICATION TECHNIQUES (2/2): INDUCTIVE PROOF OF INVARIANTS

• **invariant**
 - a formula that must be invariably true at any point of any computation
 • e.g. \(\neg(p_4 \land q_4) \)

• Invariants can be proved using **induction** over the states of all the computations:
 - to prove that A is an invariant:
 • prove that A is true in the initial state (*the base case*)
 • assume that A is true in a generic state S (*inductive hypothesis*) and prove that A is true in all the possible state next to S (*inductive step*)

• **Deductive systems**
 - software systems for automated theorem proving

\[
S = T_1 T_N \quad (2)
\]
\[
S = 1^{1−P} + P N \quad (3)
\]

\(N \) is the number of processors
\(T_1 \) is the execution time of the sequential algorithm
\(T_N \) is the execution time of the parallel algorithm with \(N \) processors
\(P \) is the proportion of a program that can be made parallel
\((1−P) \) is the proportion that cannot be parallelized (remains serial)
NOTE ABOUT SAFETY AND LIVENESS PROPERTY VERIFICATION

• safety property are easier to verify
 – a safety property must be true at all states
 • it is sufficient to find a state not verifying the property to complete the verification
 – a liveness property claims that a state satisfying a property will inevitably occur
 • it is not sufficient to check states one by one, it is necessary to check all possible scenarios
 > it requires more complex theory and software techniques